Monthly Archives: March 2014

So that Hadrosaurus skull…

In 1868, paleontologist Joseph Leidy and artist Benjamin Waterhouse Hawkins collaborated on a freestanding mounted skeleton of Hadrosaurus. This was the first time dinosaur fossils had ever been displayed in this way, and the exhibit captured the public imagination like nothing before it. I’ve already written lots about the Hadrosaurus mount (see First Full-Sized Dinosaurs and A Visit to the Academy of Natural Sciences), but it seems there is still more to say.

Hawkin's studio

Hadrosaurus mount under construction in Hawkins’ studio. Image from Carpenter et al. 1994.

Today, I’m interested in the Hadrosaurus head, or rather, the sculpted replica that stood in for its head. As I’ve covered before, the Hadrosaurus fossils recovered near Haddonfield, New Jersey accounted for less than a third of the animal’s skeleton. With two nearly complete limbs, 28 vertebrae, a partial pelvis and scattered teeth, Hadrosaurus was the most complete dinosaur known at the time, but a great deal of it was still unknown. Specifically, Hawkins had to create a skull from scratch, and conventional wisdom (e.g. these articles) has always been that he based his reconstruction on the skull of an iguana. That makes a certain amount of sense, since Leidy interpreted the Haddonfield teeth as having belonged to an herbivore, and an iguana is a contemporary herbivorous reptile.

Astrodon teeth lower left.

Hadrosaurus teeth and dentary (plus some Astrodon teeth on the lower left). From Leidy 1865.

Let’s explore that claim a little more, though. The plate above presumably represents the entirety of the Hadrosaurus cranial material Leidy and Hawkins had to work with. In addition to an assortment of isolated teeth, they had two sections of a dental battery – that is, the grinding surface made up of interlocking teeth that we now know is typical of large ornithopods. One of the battery portions came from the lower jaw (Figs. 24 and 25) and one came from the upper (Fig. 26). The sculpted Hadrosaurus skull, which Academy of Nautral Sciences Associate Curator Ted Daeschler confirms is the only surviving part of the historic mount, is pictured below. Note that Hawkins plainly incorporated the dental batteries into his reconstruction, rather than straight rows of iguana-style teeth.

Hadrosaurus replica skull at Academy of Natural Sciences. Source

Hadrosaurus replica skull at Academy of Natural Sciences. Source

So in at least one detail, the Hadrosaurus model skull is not just a scaled-up version of an iguana. The thing is, though, now that I’m really looking at it, the model doesn’t look much like an iguana skull at all beyond the basic silhouette. Look at that broadly flared jugal, the strongly curved postorbital and especially the way the premaxilla and maxilla curve downward in a beakish fashion. None of these characteristics are present on your run-of-the-mill iguana skull, but they are so extreme and precisely modeled that I would be very surprised if expert anatomists like Leidy and Hawkins simply invented them.

Labeled Iguana iguana skull by Udo Savalli.

Labeled Iguana iguana skull by Udo Savalli.

What does this mean? There are a few options.

  1. Hawkins and Leidy didn’t closely reference anything when creating the Hadrosaurus skull, and just made something up.
  2. Hawkins and Leidy based the Hadrosaurus skull on some contemporary reptile other than a green iguana.
  3. Hawkins and Leidy had more Hadrosaurus cranial fossils than we know about.

Option three is, of course, the interesting one, and is where I would appreciate if any actual hadrosaurid experts in the house would let me know if I’m talking nonsense. But don’t those peculiar non-iguana-like characters on the sculpted Hadrosaurus skull look just a bit like the actual hadrosaurid skulls that would be found in the 20th century?

Kritosaurus skull at AMNH.

Kritosaurus skull at AMNH. Photo by WikiMedia user Ryan Somma.

That downward-tilting rostrum in particular looks suspiciously similar. Is it possible that there was a more complete Hadrosaurus skull at the Haddonfield site, but it was lost or destroyed before Leidy’s publication? Maybe it was considered too fragmentary to collect and was left in the field, or maybe it fell apart in transit (J.B. Hatcher hadn’t invented field jacketing yet). Hawkins might have attempted to interpret sketches or hazy descriptions of lost material, and ended up with the model skull that survives today. I realize that this isn’t much to go on, and that it’s impossible to prove without some thorough archival research. But it is cool to think that maybe, just maybe, there was a bit more to the first American dinosaur than we known about.

References

Carpenter, K., Madsen, J.H. and Lewis, L. (1994). “Mounting of Fossil Vertebrate Skeletons.” In Vertebrate Paleontological Techniques, Vol. 1. Cambridge, UK: Cambridge University Press.

Leidy, J. (1865). “Cretaceous Reptiles of the United States.” Smithsonian Contributions to Knowledge Vol. 14, Article VI.

4 Comments

Filed under dinosaurs, fossil mounts, history of science, museums, ornithopods, reptiles

What’s the deal with Astrodon?

In Laurel, Maryland, a trail of banners depicting a herd of the sauropod dinosaur Astrodon johnstoni leads the way to Dinosaur Park, the site of a historically significant fossil deposit. At the Maryland Science Center in Baltimore, a life-sized Astrodon sculpture towers over the “Dinosaur Mysteries” exhibit. And since 1998, Astrodon has been the official state dinosaur of Maryland, joining other state symbols like the black-eyed susan and Baltimore oriole. In short, Astrodon is a sort of mascot for mid-Atlantic paleontology. Named in 1858 for fossils found in a Prince George’s County iron mine, the appeal of Astrodon for Marylanders is obvious: it’s a home-grown dinosaur in a region that is not widely recognized for its fossil resources, and the story of its discovery also calls attention to the state’s industrial heritage.

But what sort of animal was Astrodon, and how much do paleontologists truly know about it? Compared to many other extinct animals found around the world, the fossil record for Astrodon is and always has been fairly poor. The name Astrodon was first bestowed upon nothing more than isolated teeth, and although other fragmentary remains attributed to Astrodon have been uncovered over the past 150 years, reconstructions of the Maryland sauropod are mostly derived from the fossils of relatives found elsewhere. What’s more, the name Astrodon has a convoluted history, having been applied haphazardly to fossils found across the country and even around the world. For these reasons, some paleontologists would prefer that the name Astrodon not be used at all.

Lacking a scientific consensus on what sort of animal the Maryland sauropod was or even what it should be called, I find myself in a difficult position as an educator. How can the messy and contentious taxonomy of Astrodon be condensed into something teachable? Is simplifying or downplaying this controversy doing our audience a disservice, and to what degree?

The taxonomic history of Astrodon

The first scientifically recognized North American dinosaur fossils were found in the Mid-Atlantic region, a scant 17 years after dinosaurs were first recognized as a biological group in 1842. Joseph Leidy’s Hadrosaurus from the New Jersey coast is credited as the first American dinosaur to be described, but Astrodon was a close second. During the mid-19th century, iron mining was big business in central Maryland. Miners extracted large boulders of siderite, or iron ore, from open pit mines throughout Prince George’s County, and these miners were the first in the region to discover dinosaur bones and teeth. The siderite was being mined from clay deposits now known as the Arundel Formation, part of the larger Potomac Group that extends throughout Maryland (the Potomac Group was laid down during the Early Cretaceous period, between 125 and 113 million years ago). Members of the Maryland Academy of Sciences recognized the fossils from the Arundel clay as similar to the English fossil reptiles that Richard Owen had recently unified as Dinosauria. In 1858, academy member Christopher Johnston published a description of a set of teeth from the iron mines in the American Journal of Dental Science, which he named “Astrodon” (Joseph Leidy turned this informal name into a proper binomial, Astrodon johnstoni, in his 1865 review of North American fossil reptiles).

Today, most paleontologists consider it poor judgment to name a new taxon based only on teeth. When scientists describe a newly discovered organism, they designate a type specimen, which is used to define that taxon in perpetuity. But when the type specimen is especially fragmentary, or only consists of a small part of the organism, it poses a problem for future researchers. In the case of Astrodon, no newly discovered fossils other than teeth can be confidently referred to the same species. In 1858, however, paleontological norms were very different. All dinosaur fossils known at the time were exceedingly incomplete: scientists knew that dinosaurs were reptiles and that they were very big and not much else. Any new fossils, even teeth, represented a major addition to our understanding of the life appearance and diversity of these extinct animals. For modern paleontologists, Johnston’s published description of the Astrodon teeth is vague and uninformative, but in his day, these fossils were distinct from anything else yet known.

Astrodon teeth lower left.

Astrodon teeth are on the lower left.

In December of 1887, famed paleontologist Othneil Charles Marsh sent his best fossil hunter, John Bell Hatcher, to search the area in Prince George’s County where Astrodon was discovered. Judging from Hatcher’s journal entries, he didn’t have a great time. It rained and snowed almost constantly, and on several days his team didn’t bother to show up for work. Although Hatcher managed to find numerous dinosaur, crocodile and turtle fossils, these finds did not match the quality of the fossils Hatcher had been finding in the western states, and no return trips were made. Nevertheless, Marsh saw fit to name two new dinosaur species from the material Hatcher collected: Pluerocoelus altus and Pluerocoelus nanus. Neither taxon was named for material that would be considered diagnostic if found today: P. altus was based on a tibia and fibula, while P. nanus was based on four nonadjacent vertebrae.

By this time, more complete dinosaur fossils from the American west were beginning to reveal a clearer picture of dinosaur diversity. Based on the shape and size of the fossils collected by Hatcher, Marsh determined that they belonged to sauropods, the group of long-necked herbivores that includes Diplodocus and Apatosaurus. More specifically, Marsh recognized that the Arundel sauropods were similar to “Morosaurus” (now called Camarasaurus) from Colorado. Today, the lineage of stocky, broad-nosed sauropods that includes Camarasaurus and its closest relatives are called macronarians. Unfortunately, by modern standards Marsh’s descriptions of P. altus and P. nanus are rudimentary in nature, and no distinguishing characteristics not common to all macronarian sauropods were offered.

Pleurocoelus elements. Image from NMNH Backyard Dinosaurs.

Pleurocoelus (or Astrodon?) fossils collected by Hatcher. Image from NMNH online exhibit Backyard Dinosaurs.

Contra Marsh, Hatcher suspected that there was only one sauropod in the Arundel Formation. P. altus and P. nanus were probably growth stages of one species, and the Astrodon teeth, now recognized as typical of macronarians, probably came from the same animal, as well. Since the International Code of Zoological Nomenclature decrees that the first published name given to a taxon has priority, Astrodon would take precedence over Pluerocoelus. Later, Charles Gilmore published a review of the Arundel fossils, in which he concurred with Hatcher that P. altus was a junior synonym of Astrodon, but retained P. nanus as a separate species.  

Then things started getting really complicated. While paleontologists were still debating how many sauropod species existed in the Arundel clay, Marsh and others had started naming lots of new species of Pluerocoelus. Fossils found in Texas, Oklahoma and even the U.K. were all thrown into the Pluerocoelus bucket, including P. montanusP. valdensisP. becklesii and P. suffosus. For much of the 20th century, Pluerocoelus was a classic wastebasket taxon, into which any and all sauropod fossils from early Cretaceous strata were casually thrown. Since the Pluerocoelus type specimens designated by Marsh were insufficient to define the taxon based on morphology, the name became little more than a temporal marker. Adding to the confusion, researchers continued to disagree over whether all these new Pluerocoelus species should be sunk into the earlier genus Astrodon.

In recent years, some progress has been made toward untangling this mess of early Cretaceous sauropods. There is a general consensus that fossils not found in Maryland’s Potomac Group differ substantially from the Arundel sauropods and should never have been referred to Pluerocoelus or Astrodon. New names have been proposed for the midwestern sauropods, including Astrophocaudia and Paluxysaurus. However, removing the non-Maryland fossils from the discussion merely returns us to the original set of problems: how many sauropods are represented in the Arundel clay, what were they like in life, and what should we call them?

Creating a coherent picture of Astrodon

Unfortunately, the answers to these questions depend on who you ask. The most thorough review of Arundel sauropods from the last decade was published by Kenneth Carpenter and Virginia Tidwell in 2005. Carpenter and Tidwell reaffirmed Hatcher’s conclusion that Pluerocoelus is synonymous with Astrodon, and that as the earliest published name, Astrodon has priority. This decision is apparently based only on the fact that the fossils came from the same stratum, however, since the Astrodon holotype cannot be compared to anything besides other teeth. For this reason, Michael D’Emic proposed in 2012 that the names Astrodon and Pluerocoelus are nomen dubia and should both be dropped entirely. Ultimately, neither solution is practical for identifying the sauropod fossils that continue to be collected from the Arundel Formation. Either we blindly refer any and all sauropod fossils to Astrodon, even though we lack a usable holotype, or we have no label available at all.  One solution would be to establish a new type specimen (called a neotype) for Astrodon, but this has yet to be done.

Both camarasaur and brachiosaur shaped Astrodon reconstructions are equally reasonable.

Both camarasaur and brachiosaur-shaped Astrodon reconstructions are reasonable. Artwork by Dmitry Bogdanov, via Wikipedia.

While many more sauropod fossils have been found in the Arundel clay since Hatcher’s 1887 expedition, we do not have enough material to fully elucidate what these animals looked like. Size estimates have varied enormously, from as little as 30 feet to as much as 80 feet in length. The assortment of fossil bones and teeth that have been found tell us we have a macronarian sauropod, and we can reconstruct its general shape based on more completely known relatives. However, macronarians were a fairly diverse bunch, ranging from the comparatively stocky camarasaurs to high-shouldered, elongate brachiosaurs. Carpenter and Tidwell describe the Arundel sauropod fossils, particularly the limb bones, as being fairly slender, but still more robust than those of Brachiosaurus. They do recognize, however, that nearly all known Arundel sauropod fossils come from juveniles, which may vary proportionally from adults. Because the precise affinities of Astrodon are unclear, artistic reconstructions vary substantially. The National Museum of Natural History’s Backyard Dinosaurs exhibit and website shows a camarasaur-shaped sauropod, while the life-sized sculpture at the Maryland Science Center is based on the brachiosaur Giraffatitan. At Dinosaur Park in Laurel, meanwhile, both versions are on display. More fossils, ideally cervical vertebrae or more complete adult material, are needed to clarify what the Arundel sauropod looked really like.

Teaching Astrodon

When I show people the teeth and partial bones attributed to Astrodon during public programs, I am almost always asked, “if that’s all you’ve found, how do you know what the whole animal looked like?”  As demonstrated by this post, it takes 1,700 words and counting to give a proper answer, which is too much for all but the most dedicated audiences. Nevertheless, to do anything less is to skip crucial caveats and information. Scientists are choosy about the words they use, filling explanations with “probablys” and “almost certainlys”, but they do so with good reason: when one’s job is to create and communicate knowledge, there is no room for ambiguity about what is and is not known. It is therefore just a bit dishonest to say that a large sauropod called Astrodon that was related to Brachiosaurus lived in Maryland, and yet I do so every week. How can I possibly sleep at night?

I’ll admit it can be difficult, but I get by because using one proviso-free name for the Maryland sauropod seems to be  informative and helpful to my audience. I only have people’s attention for so long, and I’d rather not spend that time on tangents about how Astrodon should really be called Pluerocoelus or why my use of either name is imprecise and problematic. I want visitors to walk away understanding how paleontologists assemble clues from sedimentary structures and anatomical comparisons to reconstruct ancient environments and their inhabitants. I’d like for visitors to practice making observations and drawing conclusions, and understand how paleontology is a meticulous science that can be relevant to their lives. “Paleontologists are weirdly obsessed with changing names” is not one of the most important things to know about paleontology.

Taxonomy, the science of naming and identifying living things, is unquestionably valuable. Biologists would be lost without the ability to differentiate among taxa. From my perspective, however, the public face of paleontology tends to overemphasize taxonomic debates in lieu of more informative discussions. There will always be somebody willing to argue whether Tarbosaurus bataar should be sunk into Tyrannosaurus, or to give incorrect explanations for why we lost “Brontosaurus.” In the end, though, these debates have more to do with people’s preferences than the actual biology of these animals. Astrodon may not be a diagnostic taxon in the strictest sense, but we need to call our fossils something, and taxonomic labels exist to be informative and useful. If asked, I’m always happy to provide the full story. But for the time being, Astrodon seems to be working just fine.

References

Carpenter, K. and Tidwell, V. 2005. Reassessment of the Early Cretaceous sauropod Astrodon johnstoni Leidy 1865 (Titanosauriformes). In Carpenter and Tidwell (eds.), Thunder-Lizards: The Sauropodomorph Dinosaurs. Bloomington, IA: Indiana University Press.

D’Emic M.D. 2012. Revision of the sauropod dinosaurs of the Lower Cretaceous Trinity Group, southern USA, with the description of a new genus. Journal of Systematic Paleontology, iFirst 2012, 1-20.

Gilmore, C.W. 1921. The fauna of the Arundel Formation of Maryland. Proceedings of the United States National Museum. 59: 581-594.

Kranz, P.M. Dinosaurs in Maryland. 1989. Published by Maryland Geological Survey, Department of Natural Resources, Educational Series No. 6.

Marsh, O.C. 1888. Notice of a New Genus of Sauropoda and Other New Dinosaurs from the Potomac Formation.

Please note that the usual disclaimer applies: views or opinions expressed here are mine, and do not reflect any institution with which I am affiliated.

1 Comment

Filed under citizen science, Dinosaur Park, dinosaurs, field work, history of science, reviews, sauropods, systematics

The Top Seven Dinosaur Mounts #MuseumDinos

According to Twitter, today is #MuseumDinos day, possibly because it’s the 10th anniversary of the groundbreaking DinoSphere exhibit at the Indianapolis Children’s Museum. At any rate, dinosaurs in museums is a thing I’m kind of interested in, so here’s the first ever DINOSOURS! listicle: the hastily-planned and in-no-way-definitive top seven coolest dinosaur extinct animal mounts from around the world.

7. MegatheriumMuseo Nacional de Ciencias Naturales

The original Megatherium fossils have been remounted at the Museo Nacional de Ciencias Naturales. Image from TripAdvisor.

Megatherium at the Museo Nacional de Ciencias Naturales. Source

Let’s start with the eldest. There are quite a few ground sloth mounts in the world, but the Megatherium in Madrid has the distinction of being the first assembled skeleton of a prehistoric animal ever put on public display. It’s hard to imagine, but when Juan Bautista Bru created this mount in 1795, biological evolution was completely unknown, and naturalists were just beginning wrap their heads around the idea that organisms could become extinct. This Megatherium was a product of a very different era of human understanding about the natural world, but unlike other historic mounts like the Peale mastodon and Leidy Hadrosaurus, it has survived to the present day.

6. Stegosaurus and Allosaurus, Denver Museum of Nature and Science

Stegosaurus and Allosaurus

Stegosaurus and Allosaurus at the Denver Museum of Nature and Science. Source

In addition to being a respected scientist, Ken Carpenter is among the most skilled fossil mount creators working today. Among his most recognizable work is the Stegosaurus and Allosaurus face-off at the Denver Museum of Nature and Science. Featuring a remount of a historic Stegosaurus specimen and an Allosaurus discovered and mostly excavated by 12-year-old India Wood, this lively display was unveiled in 1995 as the centerpiece of the “Prehistoric Journey” exhibit. In addition to biomechanical accuracy exceeding many other modern mounts, this display by Carpenter and Bryan Small is imbued with remarkable dynamism and energy.

5. Tyrannosaurus pair, Museo Jurasico de Asturias

Tyrannosaurus at Museo Jurasico de Asturias. Source

Tyrannosaurus at Museo Jurasico de Asturias. Source

Then again, there are a lot of fighting dinosaur mounts. I love that dinosaurs had big teeth and killed things as much as the next person, but it’s refreshing to see a mount that showcases some other aspect of these animals’ lives. That said, the Spanish Museo Jurasico de Asturias is, as far as I know, the only museum to display a pair of copulating dinosaurs. The T. rex on the bottom looks like yet another Stan cast, but I’m not sure about the one on top.

4. Diplodocus, Carnegie Museum of Natural History (and elsewhere)

The original "Dippy" the Diplodocus at the Carnegie Museum of Natural History.

The original “Dippy” the Diplodocus at the Carnegie Museum of Natural History.

Like the Madrid Megatherium, this Diplodocus is intractably situated in history. If the worldwide popularity of dinosaurs could be traced to a single specimen, it would be this one. At the turn of the 20th century, Andrew Carnegie, who funded the creation of the Carnegie Museum in Pittsburgh, demanded that his museum find and display a sauropod dinosaur. This launched the Great American Sauropod Race, a frenzied competition among the United States’ large natural history museums to assemble the biggest dinosaur for display. The American Museum in New York was first across the finish line in 1905 with their composite “Brontosaurus”, although the Diplodocus collected by the CMNH team was a more complete specimen. Not to be outdone by his New York competitors, Carnegie commissioned several casts of the skeleton, which he presented to several cities in Europe and Latin America. Diplodocus casts sprang up seemingly overnight in London, Paris and elsewhere, and the original specimen was unveiled in Pittsburgh in 1907.

3. GiraffatitanMuseum für Naturkunde

Should the Giraffatitan at Berlin's Museum fur Naturkunde be displayed in Germany? Image from Wikipedia.

The biggest fossil mount in the world. Source

The Berlin Giraffatitan is on this list for two reasons. First, it’s really big. The biggest mount in the world composed mostly of original fossils, as a matter of fact, and big things are awesome. However, this display is also a fascinating example of the cultural meaning natural specimens can take on when placed on display. The fossils themselves were removed from what is now Tanzania under the authority of a colonial government that is no longer considered legitimate or appropriate, and the mount itself was completed in 1935, a time when the hall it was displayed in was filled with swastika flags. The fossils themselves (and the current museum staff that have inherited them) obviously have nothing to do with Nazis or colonial imperialism, but the display they were incorporated into is entrenched in history that should not be ignored or forgotten.

This is actually the second iteration of this display, the bow-legged original having been remounted in 2007.That’s one of the Carnegie Diplodocus casts peeking in from the right, by the way.

2. Triceratops, National Museum of Natural History

Triceratops at the National Museum of Natural History.

Triceratops at the National Museum of Natural History.

Triceratops is objectively the coolest dinosaur ever, and NMNH is the home to the definitive (and first) Triceratops mount. Charles Gilmore and Norman Boss constructed this composite skeleton in 1905 from fossils collected throughout Wyoming, resulting in a mount that was inaccurate in many details; most noticeably, the skull was too small compared to the rest of the body. Nevertheless, this Triceratops was the basis for illustrations in popular books for decades to come. In 2000, Steve Jabo and others retired the original mount, conserving the fossils and replacing them in the exhibit hall with a casted duplicate. Among other improvements, the undersized head was corrected by digitally scanning the original and 3D-printing it at a different scale.

1. Barosaurus and Allosaurus, American Museum of Natural History

Allosaurus and Barosaurus mount in the Roosevelt rotunda of the American Museum of Natural History. Source: http://www.ourtravelpics.com.

Allosaurus and Barosaurus mount at the American Museum of Natural History. Source

Was there ever any question what would be in first place ? The Barosaurus encounter in the Theodore Roosevelt rotunda at AMNH is a prime contender for the world’s most spectacular fossil mount. What I like most about this exhibit is the purposeful mise-en-scene: the dinosaurs decisively fill the space, drawing the viewer’s eye not only around the room but up the neck of the 50-foot Barosaurus toward the high vaulted ceiling.  Since 2010, visitors have been able to walk between as well as around the mounts, inserting their own human scale into the scene. According to AMNH paleontologist Mark Norrell, the objective of this exhibit was “to imagine dinosaurs as living organisms, facing challenges similar to those that confront animals today.” However, Norrell freely admits that the display was also meant to be a spectacle, emphasizing the “romantic history and grandeur of fossils”.

References

Brinkman, P.D. (2010). The Second Jurassic Dinosaur Rush: Museums and Paleontology in America at the Turn of the 20th Century. Chicago, IL: University of Chicago Press.

Carpenter, K., Madsen, J.H. and Lewis, L. (1994). Mounting of Fossil Vertebrate Skeletons. In Vertebrate Paleontological Techniques, Vol. 1. Cambridge, UK: Cambridge University Press.

López Piñero , J.M. (1988). Juan Bautista Bru (1740-1799) and the Description of the Genus MegatheriumJournal of the History of Biology. 21:1:147-163.

Norrell, M.A., Dingus, L.W. & Gaffney, E.S. (1991). Barosaurus on Central Park West. Natural History, 100(12), 36-41.

3 Comments

Filed under AMNH, CMNH, dinosaurs, fossil mounts, history of science, mammals, museums, NMNH, paleoart, reptiles