Category Archives: field work

The Great Mammoth of Lincoln

Lincoln, Nebraska is home to a legendary giant. The University of Nebraska State Museum, known locally as Morrill Hall or Elephant Hall, has the largest mammoth skeleton on display anywhere in the world. “Archie” the columbian mammoth is literally a giant among giants. 14 feet tall and striding on bizarre, stilt-like legs, he towers over the twelve other extinct and extant proboscidians (ten skeletons and two taxidermy mounts) in the museum’s great hall.

Like the Field Museum’s Sue the Tyrannosaurus, Archie is not only a scientific specimen, but something of a mascot. The mammoth is regularly cited as the museum’s star attraction. Its image adorns museum merchandise, and a dancing costumed Archie shows up at local schools and on game days. A bronze sculpture of a fur and flesh Archie created by local artist Fred Hoppe was placed outside the museum’s entrance in 2006, and it is apparently traditional for students to slap its outstretched forefoot for luck. At the center of it all, though, is the real mounted skeleton, which has been on display for 84 years and admired by generations of visitors.

The bronze Archie statue outside the University of Nebraska State Museum. Source

Archie’s skeleton was famously discovered by chickens. In 1921, southwest Nebraska farmer Henry Kariger noticed that his chickens were pecking at some white minerals eroding out of a hillside. Thinking the substance would be a good source of lime for his flock, Kariger started collecting it and adding it to their feed. Eventually the hill eroded further, and Kariger realized he had something more impressive than lime deposits – it was the jaws and teeth of a giant animal.

On November 14, Kariger sent a brief handwritten letter to Erwin Barbour, director of the Nebraska State Museum, describing his find. A geologist and paleontologist, Barbour started his career as O.C. Marsh’s second-in-command at the United States Geological Survey. In 1891, Barbour took the dual posts of Director of the Department of Geology at the University of Nebraska and Nebraska State Geologist. He was appointed Director of the State Museum shortly thereafter, and spent the next fifty years scouring the Nebraskan countryside for fossils to build the museum’s collection. Barbour replied to Kariger two weeks after receiving his letter, informing the farmer that he had found a mammoth, and that he was “entirely sure of this without seeing it.”

Barbour typically received dozens of letters about fossil finds every year, and he gave Kariger the same instructions he gave everyone else: avoid handling the fossils, and absolutely refrain from attempting to extract more bones from the ground. Barbour had seen countless fossils destroyed by overeager members of the public trying to pry them out by hand, or with crowbars. He informed Kariger that the museum would pay for an important find, but only if it was kept intact. Barbour requested that Kariger leave the fossils until the spring, when a museum crew could come out and assess them.

Archie the mammoth in 2010, with the author looking characteristically ridiculous.

Barbour soon discovered that Kariger had contacted a number of other museums, shopping his find around in an effort to get the best price. In a letter, Kariger informed Barbour that he had been told he had a giant sloth, and that it was exceptionally rare. Barbour held firm, repeating that the find was certainly a mammoth and that he could look at it in the spring. Apparently impatient, Kariger decided to ignore Barbour and got to work excavating the rest of the skeleton, hauling the bones out of the hillside with a team of horses. Miraculously, Kariger did not completely destroy the fossils in the process. With a good portion of a mammoth skeleton in his possession, Kariger brought his find to Lincoln the following summer to display it at the state fair. It was here that Barbour met Kariger – and his mammoth – for the first time. Barbour was suitably impressed, and immediately wrote to Henry Osborn of the American Museum of Natural History, describing the skeleton as complete save for its tusks and the lower portions of its limbs.

According to an account by Walter Linnemeyer (who was about six years old at the time), local authorities discovered that Kariger was selling bootlegged whiskey out of the back of his tent at the state fair, and confiscated both the whiskey and the fossils. Although this makes for an exciting story, Vertebrate Paleontology Collections Manager George Corner confirms that the skeleton “was not confiscated by the Museum or anyone else and then given to the Museum.” In fact, documents in the museum archives confirm that Barbour paid Kariger $250 for the fossils, and that the entirely amicable transfer occurred at the fair in 1922. Since no other documentation about Kariger being involved in illicit sales has surfaced, we must assume that the story is, as Corner puts it, “a product of the times.” Prohibition was the law of the land in 1922, and rumors about sources of illegal liquor must have been common. One might also speculate that anti-government sentiments in rural communities may have played a role in the myth-making.

Barbour poses with Archie’s legs in 1925. Source

Another reason to discount the notion that Kariger’s fossils were seized is that he and Barbour maintained a friendly relationship for years afterward. In December 1922, Kariger wrote to Barbour to inform him that he had found one of the missing tusks, but that he had damaged it while removing it from the ground (it didn’t help that his pigs had chewed on it a bit). Barbour once again asked that Kariger leave any further finds buried, reminding him that the museum would pay more for undamaged fossils. Barbour and his student William Hall made the two-day journey to Kariger’s farm the following June. They stayed with the Kariger family for five nights, paying them for room and board, as well as the services of a draft team. Even after resorting to dynamite to blast away the rest of the hill, Barbour went back to Lincoln empty handed. Still, both he and the Karigers enjoyed the experience, and they fondly reminisced about the trip in subsequent letters.

Barbour initially published the Kariger mammoth as a new species, Elephas maibeni, after museum donor Hector Maiben. Osborn’s monograph on proboscidian evolution, posthumously published in 1936, redescribed it as Archidiskodon imperator (hence “Archie”). Archidiskodon has since been folded into Mammuthus columbi, or the columbian mammoth, a species which ranged throughout the western United States and Central America.

Barbour oversees his impeccably-dressed staff as they mount Archie’s skeleton. Source

When the University of Nebraska State Museum acquired Archie in 1922, space was severely limited. Collections were already stuffed into attics, cellars, and even the steam tunnels between university buildings. Nevertheless, Barbour ensured that at least part of the record-sized mammoth was on display. In 1925, he mounted the forelimbs and part of the torso, forming an archway at the museum’s entrance. A new, larger museum building funded by donor Charles Morrill was completed two years later, and the Kariger mammoth was immediately a candidate for display as a complete mounted skeleton. Barbour sent preparator Henry Reider out that summer to collect isolated mammoth bones that could fill in Archie’s incomplete legs. Soon work on the full mount was underway, with contributions from Reider, Eugene Vanderpool, Frank Bell, and others. The 14-foot tall, 25-foot long mount took years to construct, but was finally completed in the spring of 1933.

Even before Archie was complete, it was clear that the new museum’s central hall would be a showcase for fossil elephants. The lineup of mounted skeletons, which has not changed significantly since the mid-20th century, includes two columbian mammoths, an American mastodon, Stegomastodon, Gomphotherium, Amebelodon, Eubelodon, a pygmy mammoth, and contemporary African and Asian elephants. Elizabeth Dolan provided two parallel background murals which depict elephants around a forested watering hole in an impressionistic style. Today, a contemporary mammoth mural by Mark Marcuson adorns the far wall.

The spectacular elephant hall (Archie is along the left wall, blocked by the taxidermy elephants from this angle). Source

84 years after it was first assembled, the skeleton of Archie the mammoth is a Nebraska icon. Indeed, this mount and the hall it resides in have become a time capsule, a landmark to return to again and again for generations of visitors. Nevertheless, even the most beloved icons are not completely safe. The Nebraska state legislature has repeatedly hit the State Museum with budget cuts, including an astonishing 50% cut in 2003 accompanied by the dismissal of several tenured curators. Thanks to inspired leadership by Director Priscilla Grew, the museum re-earned its accreditation in 2009 and became a Smithsonian Affiliate in 2014. Still, the series of events is a sobering reminder that while museums exist as a public service, they are also dependent on public support. Funding museums must be a top priority if we want legendary displays like Archie to be on exhibit for generations to come.

Many thanks to George Corner for answering my questions about Kariger’s mammoth. Any factual errors are my own.

References

Barbour, E.H. 1925. Skeletal Parts of the Columbian Mammoth Elephas maibeniBulletin of the Nebraska State Museum. 10: 95-118.

Corner, R.G. 2017. Personal communication.

Debus, A.A. and Debus, D.E. 2002. Dinosaur Memories: Dino-trekking for Beats of Thunder, Fantastic Saurians, “Paleo-people,” “Dinosaurabilia,” and other “Prehistoria.” Lincoln, NE: Authors Choice Press.

Knopp, L. 2002. Mammoth Bones. Interdisciplinary Studies in Literature and Environment. 9:1: 2002.

Linnemeyer, W. and Nutt, M. 2009. Mammoth Bones and Bootleg Whiskey. The Mammoth: A Newsletter for the Friends of the University of Nebraska State Museum. August 2009.

Osborn, H.F. and Percy, M.R. 1936. Proboscidia: A monograph of the discovery, evolution, migration, and extinction of the mastodonts and elephants of the world. New York, NY: American Museum Press.

Leave a comment

Filed under exhibits, field work, fossil mounts, history of science, mammals, museums, paleoart

National Fossil Day 2017

Everyone knows fossils are cool. They are the earthly remains of giant, fierce, fantastical, but very much real monsters from our planet’s distant past. But since today is National Fossil Day, it’s a good time to remember what else fossils are.

Fossils are cool: Alamosaurus, Tyrannosaurus, Mammuthus, and Quetzalcoatlus at the Perot Museum of Nature and Science.

Fossil plants and animals provide us with a long view of the Earth. After all, the past and the present are not different places, but parts of a single continuum. Fossils tell us how life has evolved and diversified in response to a changing planet, and ultimately tell us how the world we know came to be. We cannot hope to understand the world around us, much less how to preserve and protect it, without the fossil record. With the information provided by fossils, we can explore ways to mitigate the effects of climate change, habitat destruction, and other anthropogenic planetary changes by studying how life has responded to similar challenges in the distant past.

The fossil-filled painted desert at Petrified Forest National Park.

It’s also a good time to think about the institutions that make it possible for us to learn about the past through fossils. The United States has a noble tradition of establishing public lands – protected wilderness spaces that can be enjoyed by everyone. Land administered by the National Park Service, the Bureau of Land Management, and other federal and local agencies is the source of a plurality of the fossils found in the United States. Fossils found on public lands belong to the American people, and the aforementioned agencies keep those fossils safe and accessible by running interpretive programs and issuing collecting permits. They ensure that fossil collection on public lands is orchestrated in a professional way that will preserve all relevant contextual information.

The National Museum of Natural history has protected these rare Maryland sauropod fossils since the 1890s. 

Fossils recovered from public lands live in museums. There are many words that are routinely used to characterize museums – mysterious, cavernous, prestigious, dusty. But to quote Stephen Weil, museums are also “rationally organized institutions directed toward articulable purposes.” Museums exist as a public service, with two clear aims: to protect and preserve objects that are worth protecting and preserving, and to provide opportunities for life-long learning in the communities they serve. Behind the scenes, small armies of skilled staff keep track of the specimens in their care, and protect them from the effects of light and pests and time. Indeed, a well-run museum collection is anything but mysterious and dusty – the precise location of each of the thousands or millions of objects is known, and each object is kept in good condition. Without museums, fossils would weather away, or would be hidden and eventually lost in a private collection. Museum collections exist to be used – they are made available to students and researchers seeking to learn new information about those specimens, and the most remarkable or informative examples are put on display.

And with that, I’ve said my piece. When you’re thinking about how awesome fossils are today, remember to thank the stewards of public lands and collections managers that have made our discovery of past worlds possible. Happy National Fossil Day – Peace, love, and fossils.

Reference

Weil, S.E. 2002. Making Museums Matter. Washington, DC: Smithsonian Books.

Leave a comment

Filed under collections, education, field work, museums, opinion, science communication

A Tour of Dinosaur Park

I generally use this blog to write about other people’s work, but today I’m going to turn the tables and share a project I’ve been involved with for the past couple years. As of this month, the new interpretive area at Laurel, Maryland’s Dinosaur Park is (just about) complete. I’m proud of my own contributions, and ecstatic with all the work my immeasurably talented and dedicated colleagues have done to bring this project to fruition.

Introductory sign at Dinosaur Park.

Dinosaur Park is a 41-acre site operated by the Maryland-National Capital Park and Planning Commission that preserves the most productive dinosaur fossil quarry in the eastern United States. Historically known as the Muirkirk quarry, this location has been a known source of dinosaur material since 1858. Fossils were first discovered by ironworkers collecting siderite for processing at the nearby Muirkirk ironworks. Later, O.C. Marsh, John Bell Hatcher, Charles Gilmore, Richard Lull and other prominent paleontologists would collect or study fossils from this deposit. The site was largely forgotten for most of the 20th century, but in the 1980s Peter Kranz, Tom Lipka, and others relocated it and began unearthing new material. Highlights included a massive sauropod femur, basal ceratopsian teeth, and the only Mesozoic mammal fossils ever found east of the Mississippi River.

The Muirkirk quarry produced some of the first dinosaur fossils to be scientifically studied in North America, and as such conceptions of its position in geologic time have understandably changed over the years. Marsh assumed the site was Jurassic in age because of the presence of sauropods, but Gilmore later revised it to Cretaceous. Based on pollen data, we can now place the site (and the Patuxant Formation as a whole) at the Aptian-Albian boundary in the Lower Cretaceous. Contrary to older proposals, the Muirkirk dinosaur fauna has more in common with the middle strata of the Cedar Mountain Formation in Utah than the Wealden Group in England.

Excavating a sauropod femur at the future site of Dinosaur Park in 1991. Photo courtesy of Pete Kroehler.

Dinosaur Park fossils aren’t much to look at, but they are remarkable for their diversity. This is a record of a complete ecosystem.

Thanks to some determined lobbying, the M-NCPPC (a bi-county organization that administers parks and urban planning) acquired the Muirkirk site and formally dedicated Dinosaur Park in October 2008. From its inception, Dinosaur Park was conceived as a citizen science project. During school programs and regularly scheduled open houses, visitors are invited to take part in ongoing prospecting for fossils. These programs emphasize stewardship of natural heritage, rather than treasure hunting, and to date visitors have discovered thousands of specimens. All of these fossils are accessioned into the county’s collection for research and education, and important specimens are turned over to the National Museum of Natural  History for final curation (search the NMNH Paleobiology collections database for “Arundel” to view this material).

Citizen scientists prospecting for fossils at Dinosaur Park.

Back in 2008, there wasn’t much to Dinosaur Park beyond the fossil site, a protective fence, and a small gravel parking lot. There were always plans to further develop the site, however, and thanks to the Park’s ongoing popularity we were able to kick off the phase II construction in 2016. The project involved developing the entrance area with exhibits and visitor amenities. There wasn’t a lot of space to work with, and the new facilities would have to do double duty: they needed to be useful both during guided programs and for drop-in visitors during the week (when the fossil site is closed). We ended up with an integrated, multipurpose space incorporating a series of exhibit signs, a garden of “living fossil” plants, a presentation area, a climbable dinosaur skeleton, two picnic benches, and a restroom and drinking fountain.

A number of additions were – to the probable annoyance of my colleagues –  the result of me piping up with a last-minute “wouldn’t it be cool if…” suggestion. That’s how we ended up with a life-sized image of the Astrodon femur discovered by the Norden  family in 1991, a trail of sauropod footprints, and a series of displays about baby sauropods (perhaps there’s a theme there?).

The garden, play area, and other new facilities at Dinosaur Park.

One of several new interpretive signs.

The content of the exhibit signs was directly informed by formal and informal visitor surveys. We took note of visitors’ most frequent questions, as well as which parts of our old displays were being ignored or misunderstood. For example, lots of visitors wanted to know about the biggest or most important fossils found at the Park. These weren’t illustrated on our old signs, but they’re integral parts of the new ones. Meanwhile, very few visitors were engaging with content about local geology, so those sections ended up being cut.

A section of Shoe’s masterful Cretaceous Maryland mural. Artwork by Clarence Schumaker, courtesy of the M-NCPPC.

For me, and hopefully many visitors, the highlight of the new displays is the spectacular mural created by Clarence “Shoe” Schumaker. Shoe has produced artwork for numerous parks and museums, including several National Park Service facilities, but to my knowledge he had never painted dinosaurs before. Nevertheless, he approached the project with unquenchable enthusiasm, determined to get every detail correct. Working with Shoe was a fantastic experience – I would send him my hasty sketches and random ideas and he would somehow turn them into spectacular imagery. Our goal was to produce an image that would be at home in any nature center. This is an overview of an ecosystem, and the presence of dinosaurs is only by happenstance. The final piece is mesmerizing, and I think its hyper-detailed placidity gives it a certain Zallinger-like quality.

The finished mural was so cool that I couldn’t help but ask for more. One under-reported virtue of the Dinosaur Park collection is that we have sauropod remains from a variety of ages and sizes – from 70-foot adults to tiny hatchlings. I suggested a single image of a baby sauropod to help illustrate these animals’ remarkable growth potential. Shoe turned around and produced two full paintings and a life-sized model. The man is seriously unstoppable.

Shoe’s 2D and 3D baby Astrodon art. Artwork by Clarence Schumaker, courtesy of the M-NCPPC.

It’s been a wonderful experience seeing the Dinosaur Park interpretive area come together, and the few places where compromises were made are vastly overshadowed by the many prominent successes. Dinosaur Park is an important resource, both for growing our knowledge of prehistory and for introducing the local community to the process of scientific discovery. I can’t wait to see it continue to grow!

3 Comments

Filed under citizen science, Dinosaur Park, dinosaurs, education, exhibits, field work

Dispatch from SEAVP2016

Wow, it’s been awhile. The real world has been keeping me busy, but I’ve been researching a couple new museum  history stories that I will write up with all haste. In the meantime, I’d like to share some brief thoughts on the Southeast Association of Vertebrate Paleontology conference at the Virginia Museum of Natural History, which I attended earlier this week. SEAVP has a reputation for being fairly laid back, even as gatherings of paleontologists go. No frantic networking or jostling to introduce oneself to celebrity researchers, just a bunch of enthusiastic people excited to share their work.

Acrocanthosaurus is photobombed by some legless mammal.

Acrocanthosaurus is photobombed by some legless mammal.

With 50-some attendees, nearly everyone was either speaking or presenting a poster. Miranda Armour-Chelu took on the challenge of reconstructing the taphonomic circumstances surrounding historically collected dugong fossils. Marcelo Kramer shared his adventures prospecting for Quaternary fossils in unexplored caves in northern Brazil. Julie Rej explained the difficulty of identifying Australian agamid fossils when most modern comparative collections in museums consist of pickled lizards, rather than bones. My own talk was a show-and-tell session of some of the cool new fossils discovered by visitors to Maryland’s Dinosaur Park. If I had to pick a standout session, it would be C.T. Griffin’s fascinating research comparing the growth trajectories of early dinosaurs to modern birds and crocodillians. Not as straightforward as one might expect.

Splitting shale at the Solite Fossil Site.

Splitting shale at the Solite Fossil Site.

tanywhatsit

Max’s tanywhatsit fossil.

The following day, we visited the famed Solite Fossil Site, one of the most fossiliferous terrestrial Triassic localities in the world. These shales are best known for preserving an abundance of unique insects, but vertebrates and diagnostic plant fossils are also known. In particular, the site has produced hundreds of the tiny long-necked reptile Tanytrachelos. It only took 20 minutes for my colleague Max Bovis to find a “tany”, and an hour later he reportedly found a fossil fish. Both will be entered into the VMNH collection. We also visited Virginia Tech, where Michelle Stocker and Sterling Nesbit provided a tour of the paleobiology department facilities. We saw unique fossils from Ghost Ranch, New Mexico and the extant comparative specimen lab, but I was most envious of their 3-D printing set-up!

An immersive

An immersive habitat diorama featuring the Ice Age beaver Castoroides.

What of the exhibits at VMNH? They’re fantastic. Despite the museum’s small size, the production quality on all the displays is really top notch. The Uncovering Virginia hall highlights several fossil sites around the state, including the Ice Age mammals from Saltville, the coal seams of Grundy, and the aforementioned Solite quarry. In addition to original specimens and reconstructions of the excavations, there are a number of inspired hands-on activities. Visitors can put a whale jaw back together and articulate a femur with a pelvis, mirroring challenges actually faced by fossil preparators (nary a sandbox dig in sight!). I also liked a multimedia display where pressing a button (labeled “press here to go back in time”) pulls back an image of the Grundy coal mine and reveals a moving diorama of a Carboniferous coal swamp.

The central Hall of Ancient Life features local whale and Ice Age fossils, as well as some visiting dignitaries like a cast of Big Al the Allosaurus. Don’t forget to check out the second floor balcony, which contains Morrison Formation dinosaur bones and a secret Tenontosaurus mount.

aww

Group photo courtesy of Alex Hastings, VMNH.

All in all, an excellent conference – hats off to Alex Hatings, Christina Byrd, and everyone else involved in arranging it. I’m looking forward to next year’s meeting, which will be hosted by the Gray Fossil Site Museum in Tennessee!

3 Comments

Filed under citizen science, Dinosaur Park, dinosaurs, education, exhibits, field work, mammals, museums, reptiles, reviews

A Trio of Tyrants

The frentic search for North American dinosaur fossils in the late 19th and early 20th centuries can be divided into three phases. First came O.C. Marsh and E.D Cope, whose infamous rivalry resulted in literal trainloads of fossil material and laid the groundwork for our present understanding of dinosaur diversity. Next, teams sponsored by the newly-formed American, Carnegie, and Field museums returned to the same hunting grounds in the western interior to secure display-worthy specimens for their great halls of exhibition. The final phase was smaller in scale but yielded dinosaur specimens so spectacularly complete that most have gone unmatched to this day.

This third fossil rush occurred not in the United States but in Canada, along the cliff-like banks of Alberta’s Red Deer River. Fossil hunting in this region was pioneered in the late 1800s by George Dawson, Joseph Tyrell, and Lawrence Lambe, all working for the Canadian Geological Survey. This success did not go unnoticed by the the American Museum of Natural History’s Department of Vertebrate Paleontology. In 1910, the museum mounted an expedition led by Barnum Brown to the Red Deer River. Rather ingeniously, Brown’s team acquired a pair of 30-foot floating barges, which were used as mobile platforms from which they could excavate the steep river banks. The barges also served as floating campsites and a handy means of transportation in a region without reliable roads.The adventurous Brown was already a media favorite, and the publicity surrounding his Alberta expeditions only increased when the team started bringing back fully articulated and nearly complete dinosaur skeletons (including several with skin impressions).

Under pressure from constituents concerned that the Americans were hauling away so much of their natural heritage, the Canadian government formed its own team of fossil collectors in 1912. The new Canadian Geological Survey team was headed by independent fossil hunter Charles H. Sternberg (a veteran collector who had once worked for Cope) and his sons George, Levi, and Charles Jr. The Canadian and American teams worked in the same region for the next five field seasons. Their rivalry was usually good-natured, but on more than one occasion Brown saw fit to grumble about the Sternbergs’ ethics (never mind that he was the one permanently removing fossils from their country of origin).

Gorgosaurus at AMNH

Three tyrannosaurs mounted in relief at AMNH. Image courtesy of the AMNH Research Library.

All of this is so much preamble for the actual topic of this post – three remarkable Gorgosaurus skeletons* collected near the Red Deer River during the Canadian fossil rush. All three were eventually mounted in relief by AMNH preparator Peter Kaisen, and for a time they were displayed together in the Hall of Fossil Reptiles. These specimens are on the short list of most complete large theropod dinosaurs ever discovered, and in their day they provided researchers an unprecedented look at the physiology of these amazing animals. Nearly a century later, the three mounts are virtually unchanged. Locked behind glass for decades and largely inaccessible to researchers, the mounts themselves are now relics of a fascinating transitional period in the history of dinosaur studies.

*AMNH also recovered a fourth tyrannosaur during this period – Gorgeous George the Daspletosaurus.

As usual, a brief explanation of nomenclature is required. William Matthew and Barnum Brown originally described these specimens as Gorgosaurus, a genus that Dale Russell sank into Albertosaurus in 1970. Most specialists no longer support this synonymization, but the specimens at AMNH are still labeled as Albertosaurus.

Gorgosaurus libratus – USNM 12814

gorgo

A recent photo of USNM 12812 from the ongoing renovation of the national fossil hall. Source

USNM 12814 (originally designated AMNH 5248) was excavated by Brown’s company in 1913 and prepared for display in 1918. Kaisen elected to recreate the death pose in which the Gorgosaurus was found, with its head swept backward over its body. All told, the finished mount included a skull, a complete set of cervical and dorsal vertebrae, complete forelimbs, and a single femur – the pelvis and the rest of the hindlimbs were filled in with casts from other specimens. Since the skeleton was mounted in relief, Kaisen simply painted the tail onto the backdrop.

After at least a dozen years on display at AMNH, the Gorgosaurus was traded to the National Museum of Natural History as part of a complicated deal between the two museums. While surveying fossil collections throughout the United States, Brown realized that a single Barosaurus skeleton from Dinosaur National Monument had been divided among three different institutions. NMNH had the neck and part of one forelimb, the Carnegie Museum had the tail, and the University of Utah had the rest. Between 1929 and 1933, Brown arranged a series of trades in order to unify the Barosaurus at AMNH. The Smithsonian in particular drove a hard bargain – the museum had already invested $3400 in preparing their Barosaurus section, and paleontology staff wanted a good return for their investment. Brown’s initial offer was the fully prepared and mounted Gorgosaurus. Although AMNH valued the field and prep time spent on the fossils at $4573, it was at that point a duplicate specimen taking up valuable space in their increasingly crowded exhibit hall.

NMNH dinosaur specialist Charles Gilmore confided in Brown that he was okay with this trade, but fellow Smithsonian paleontologist Alexander Wetmore wasn’t sold. For years, NMNH staff had been trying to acquire one of the many Moropus specimens AMNH had collected at the Agate Fossil Beds in Nebraska. NMNH had offered a variety of specimens to trade, even sending AMNH a set of brontothere skulls at one point, but AMNH was adamant the Moropus fossils could only be exchanged for cash. Brown really wanted that Barosaurus neck, so in January of 1933, he finally relented and offered the Smithsonian a largely complete Moropus in addition to the Gorgosaurus. Not long after, the Gorgosaurus relief mount found its way into the Hall of Extinct Monsters at NMNH.

Gorgosaurus sp. – AMNH 5458

albertosaurus

A technician (probably Kaisen) adjusts the steel strap holding the femur in place. Source

Brown’s team found their second Gorgosaurus near Steveville, Alberta in 1914. Complete save for the left leg, right arm, and parts of the rib cage and tail, the mount was ready for display in May of 1921. At 24 feet long and 14 feet high, this was by far the largest relief mount at the museum. In fact, it was too big to fit through the workshop doorway in one piece, so Kaisen constructed it in eight sections that were sealed together in the exhibit hall. Each section had its own wooden frame for support, and the bones themselves were held in place with steel straps. The skull, jaw, and left forearm could be removed for individual study. This was unusual for the period (most contemporary fossil mounts were designed to be permanent) and speaks volumes about this specimen’s unique scientific value.

This mount is particularly notable for its awkward running pose. Directly contradicting many narratives of early 20th century paleontology, Matthew and Brown envisioned Gorgosaurus as an animal that “walked and ran much like a gigantic bird.” The AMNH team posed this mount after studying photos of bipedally running lizards, particularly the western tiger lizard*. However, Matthew and Brown noted that the dinosaur’s  limb proportions and range of motion more closely resemble a bird than a lizard, and adjusted the pose accordingly. They also advised a more conservative stride length to compensate for the animal’s considerable weight.

*Matthew and Brown do not provide a scientific name, and the common name “western tiger lizard” doesn’t seem to be used any more. Anyone know what it’s called today?

The final pose was a compromise between the elevated torso of a running lizard and the comparatively tight gait of a bird. It looks more than a little strange, but AMNH 5458 is certainly closer to our present understanding of theropod posture than most mounts of the era. Matthew and Brown’s interpretation of Gorgosaurus turned out to be ahead of its time. Some contemporary researchers, including Lawrence Lambe, declared the running pose to be highly improbable, and virtually all theropod mounts constructed over the next 60 years returned to the tail-dragging posture of the 1915 AMNH Tyrannosaurus.

Gorgosaurus sternbergi” – AMNH 5664

gorgo sternbergi

Gorgosaurus “sternbergi” as it was discovered and originally mounted. Source

The most complete tyrannosaur from the Red Deer River was not collected by the AMNH party, but by the Sternbergs. The elder Charles Sternberg discovered the specimen in 1917, entirely intact save for the left arm and the very end of the tail. In fact, this was the most complete large theropod ever found in North America until it was surpassed by yet another Gorgosaurus, TCM 2001.89.1. Sternberg first attempted to sell the specimen to the British Museum. They weren’t interested, but AMNH was. In 1918, the Department of Vertebrate Paleontology bought the skeleton for $2000, thus completing the tyrannosaur trio.

Matthew and Brown described AMNH 5664 as a new species – Gorgosaurus sternbergi. In their 1921 publication, they describe the skull as longer and shallower than other Gorgosaurus specimens, with rounder orbits. However, Brown and Matthew recognized that these could be juvenile characteristics, noting as well that the unfused pelvic bones were an indication of immaturity. As early as 1970, this specimen was suspected to be a juvenile Gorgosaurus (or Albertosaurus) libratus.

Kaisen prepared the relief mount in 1921, this time assisted by Carl Sorenson. The photo above shows the original version of this mount, with the tail projecting straight back from the body. This was how Sternberg discovered the skeleton, and Kaisen wanted to keep the death pose intact. In the 1950s, the tail was “corrected” to make it drag on the ground. Although the display has not been altered since, the revised tail posture is now considered inaccurate. Indeed, the vertebrae apparently had to be angled unnaturally to make the dragging tail work at all.

AMNH 5027 was restored and remounted in 1995.

The Gorgosaurus plaque mounts hide behind Tyrannosaurus rex at AMNH. Photo by the author.

All three Gorgosaurus specimens were first displayed in the cramped quarters of the Hall of Fossil Reptiles (now the Hall of Primitive Mammals) with the rest of the growing AMNH dinosaur collection (USNM 12814 and the tail of AMNH 5664 are barely visible in this photo). 5458 and 5664 moved to the newly opened Great Hall of Dinosaurs in 1922. They flanked the gallery’s rear doorway for 70 years before being moved to the Hall of Saurischian Dinosaurs in 1994. Meanwhile, the Gorgosaurus transferred to the Smithsonian first appeared in the Hall of Extinct Monsters in the 1940s, displayed behind glass on the north wall. It switched to the south side in 1962, and moved about 30 feet up the wall in 1981, where it could only be properly seen from the mezzanine ramp.

Aside from the aforementioned alternation to AMNH 5664’s tail, the Red Deer River Gorgosaurus trio has not been modified since they were first built. This may well change in the not-to-distant future. The NMNH crew is hard at work on a thorough renovation of the national fossil hall, dismantling and restoring all of the classic dinosaur mounts. Meanwhile, the current AMNH paleontology exhibits are now 20 years old, and will soon be due for a similar overhaul. Both institutions will need to decide whether or not to free the Gorgosaurus specimens from their plaster substrate. This would be an extremely difficult process, but not impossible – Phil Fraley Productions recently rebuilt the Carnegie Museum’s Corythosaurus, Dryosaurus, and Camptosaurus as free-standing mounts. Dismantling the relief mounts would give a new generation of scientists access to these important specimens, and it would allow for the skeletons to be given more accurate poses. In addition, a standing Gorgosaurus mount alongside either museum’s Tyrannosaurus rex would be both informative and awesome.

Nevertheless, remaking these mounts would also destroy significant historical context. The carefully restored death pose of USNM 12812 seems like something worth preserving, and the AMNH specimens represent an important transitional period in the history of dinosaur science. In the past, museums have often taken a “science marches on” approach when updating aging displays, but in these mounts might be unique enough in their current form to be left as-is. What do you think?

References

Carr, T.D. (1999). Craniofacial Ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria). Journal of Vertebrate Paleontology 19: 497-520.

Colbert, E.H. (1968). Men and Dinosaurs: The Search in Field and Laboratory. New York, NY: E.P. Dutton & Co., Inc.

Gilmore, C.W. (1946). Notes on Recently Mounted Reptile Fossil Skeletons in the United States National Museum. Proceedings of the United States National Museum Vol. 96 No. 3196.

The Long Road to a Fossil Swap. Digging the Fossil Record, March 19, 2015. http://nmnh.typepad.com/smithsonian_fossils/2015/03/gorgosaurus-and-moropus.html

Matthew, W.D. and Brown, B. (1923). Preliminary Notices of Skeletons and Skulls of Deinodontidae from the Cretaceous of Alberta. American Museum Noviates 89: 1-10.

Russell, D. (1970). Tyrannosaurs from the Late Cretaceous of western Canada. National Museum of Natural Science Publications in Palaeontology 1: 1–34.

3 Comments

Filed under AMNH, dinosaurs, field work, fossil mounts, history of science, museums, NMNH, reptiles, theropods

Permo-Triassic Synapsids at NMNH

Click here to start the NMNH series from the beginning.

In the middle decades of the 20th century, museum theory and paleontological science were undergoing complementary revolutions. Museum workers shrugged off their “cabinet of curiosity” roots and embraced visitor-centric, education-oriented exhibits. Designers began to envision the routes visitors would travel through an exhibit space, and consider how objects on display could contribute to holistic stories. Meanwhile, paleontologists like Stephen J. Gould and David Raup moved their field away from purely descriptive natural history, exploring instead how the fossil record could inform our understanding of evolution and ecology. The common thread between both transitions was a focus on connections – bringing new meaning and relevance to disparate parts by placing them in a common narrative.

Between 1953 and 1963, the Smithsonian implemented an institution-wide modernization program, transforming virtually every exhibit in the museum complex. The National Museum of Natural History began renovations to its classic fossil halls in 1959, and the new exhibits were emblematic of contemporary trends in both museum design and paleontology. The plan, as devised by exhibit designer Ann Karras, was to do away with the loose arrangement of specimens and turn the east wing into a guided narrative of the biological and geological history of Earth. Responsibility for selecting specimens and writing label copy in each of the four halls fell to a different curator. In Hall 2, which housed dinosaurs and fossil reptiles, that curator was Nicholas Hotton.

Layout of the USNM east wing, circa 1963.

Layout of the NMNH east wing as of 1963.

Hotton joined NMNH in 1959 as an Associate Curator of Paleontology. Entirely onboard with Karras’s vision and the paleobiology movement as a whole, Hotton described the old exhibits as “crowded” and “unorganized.” He thought NMNH had plenty of dinosaurs, but “mammal-like reptiles”* were sorely needed if Hall 2 was to tell the complete story of amniote evolution. Following that, Hotton’s mission over the next several years was to assemble a respectable collection of synapsid specimens for NMNH, and to incorporate them into a well-illustrated exhibit on the origins of mammals. This post highlights just a few of the specimens featured in Hotton’s version of Hall 2.

*In Hotton’s day, early mammalian relatives were usually called “mammal-like reptiles”, hence their inclusion in the fossil reptile exhibit. Today, most specialists prefer a more precise definition of reptiles that excludes synapsid (mammal-line) animals. In this post, I will be using the modern classification wherever possible. 

The Dimetrodon

Prior to 1960, the non-mammalian synapsid collections at NMNH were mostly limited to early Permian pelycosaurs. The most impressive of these was a Dimetrodon gigas collected in 1917 by independent fossil hunter Charles Sternberg. One of the best collectors of his day, Sternberg worked intermittently for E.D. Cope, O.C. Marsh, and various American museums. In the summer of 1917, however, Sternberg was on a personal collecting trip with his son Levi. Their target was the Craddock Ranch bone bed of Baylor County, Texas, which was first explored in 1909 by a University of Chicago team. Sternberg was already quite familiar with this part of western Texas, having made some of the first thorough surveys of the Permian “red beds” in the 1880s, but the site itself was new to him. Nevertheless, Sternberg was extraordinarily successful that summer, collecting hundreds of fossils from a wide range of animals. He offered this bounty to the Smithsonian, and they purchased it from him immediately.

The Craddock Ranch fossils were particularly appealing because of their unique preservation. Buried in soft clay at the bottom of a shallow pond, the fossils had been removed from the ground with relative ease, and were largely free of encrusting matrix. Although few of the bones were articulated, many were identifiable. All told, the Sternberg collection included at least 35 skulls and partial skeletons from amphibians like Cardiocephalus, Diplocaulus, and Seymouria, plus hundreds of individual Dimetrodon bones, and a single articulated Dimetrodon specimen.

Note short tail

An early photograph of the Dimetrodon mount. Image from Gilmore 1919.

Dimetrodon first displaed on north wall

The Dimetrodon was first displayed on the north wall of the Hall of Extinct Monsters. Source

That Dimetrodon (USNM 8635) was the basis for a mount constructed by T.J. Horne. The articulated skeleton included a complete series of presacral vertebrae, the shoulder girdles, most of the forelimbs, and the left femur and tibia. The skull and jaw bones were found disarticulated, but bound together in the same mass of matrix as the skeleton. Horne added the pelvic bones and sacrum from smaller Dimetrodon specimens, and sculpted the rest of the missing material in plaster to complete the mount. Notably, his reconstructed tail was extremely short and stubby. Although the American Museum and Field Museum already had Dimetrodon mounts on display, the NMNH version stood out because of its open jaws, which Charles Gilmore said “gives the animal an appearance of angrily defying one who has suddenly blocked his path.”

Gilmore added the Dimetrodon to the Hall of Extinct Monsters in 1918. Like the other standing mounts constructed under Gilmore’s supervision, the skeleton was placed on a base textured and painted to resemble the rocks in which it was found. At this point in time, the NMNH fossil halls lacked any overarching organizational scheme, and interpretive content was minimal. Nevertheless, Gilmore displayed the Dimetrodon mount with both a small model and a 15-foot oil painting by Garnet Jex, which provided general audiences a better understanding of the animal’s life appearance.

dimetrodon

Dimetrodon in the 1963 fossil reptiles exhibit. Image courtesy of the Smithsonian Institution Archives.

Dimetrodon in 2014. Photo by the author.

Dimetrodon after the 1981 renovation. Photo by the author.

During the 1962 renovation, Hotton re-contextualized the classic Dimetrodon mount as a mammal ancestor. Unmissable orange arrows pointed to the specific anatomical traits that signify the animal’s kinship with mammals, including heterodont teeth and a single temporal fenestra. By design, visitors would pass Dimetrodon before visiting the true mammals in the adjacent hall.

The Dimetrodon skeleton itself was altered during the next renovation in 1981, when it was placed on a new, untextured base and given a longer replica tail. Contemporary staff also repainted the plaster sections to more closely resemble the original fossils – a surprising reversal of Gilmore and Horne’s original intention to make the reconstructed bones obvious to viewers.

The Thrinaxodon

Pelycosaurs like Dimetrodon were the first major synapsid radiation, but by the middle Permian they were almost entirely replaced by therapsids. A more derived group which includes modern mammals, therapsids spread across the globe and became increasingly diverse as the Permian progressed. From weasel-sized burrowers to multi-ton herbivores, non-mammalian therapsids were among the first animal groups to conquer a wide range of terrestrial niches. Hotton wanted to tell this story in the modernized fossil exhibit, but there were hardly any non-mammalian therapsids in the NMNH collections. To correct this problem, Hotton took to the field for several months in 1960, and again in 1961. He joined James Kitching in exploring the Beafort Group rocks of South Africa, which were known to produce plentiful Permian and Triassic vertebrate fossils. Hotton returned to the museum with over 200 new specimens, the best of which were used in the renovated exhibit.

Thrinraxodon with Cynognathus skull

Thrinaxodon paired with Cynognathus skull. Photo by the author.

Hotton’s most prized find from South Africa was a gorgeously preserved and nearly complete Thrinaxodon liorhinus (USNM 22812). Hotton called this specimen “Baby Doll”, and while it was not prepared in time for Hall 2’s 1963 opening, it would later earn a spot of honor in the exhibit. Before that happened, though, Baby Doll was actually stolen by an over-enthusiastic volunteer. The FBI located and returned the fossil a year and a half later.

Since the 1970s, the Thrinaxodon has been displayed alongside the skull of Cynognathus crateronotus (USNM 22813), which Hotton collected on the same expedition. Both are members of the cynodont clade, which includes some of the closest relatives of modern mammals.

 The Daptocephalus

Less than a month after hall 2 reopened, Nicholas Hotton returned to South Africa. This time, he was accompanied by his spouse Ruth Hotton and their three young children. For seven months, the Hottons traveled among fossil sites on different ranches, camping most nights. They collected some 300 specimens for the Smithsonian, and Hotton’s biostratigraphic mapping of the Beaufort Group brought a measure of clarity to this region’s historically convoluted geology.

Ruth Hotton made one of the trip’s most impressive finds while prospecting in a dry riverbed with her daughter, Carol (who is now a paleobotanist at NMNH). Turning a corner, she stumbled upon a dicynodont skeleton, completely exposed and lying in the middle of the channel. One can only imagine the surprise and delight of finding an articulated fossil skeleton completely uncovered. If the Hottons had been there one season earlier or one season later, the river would have undoubtedly destroyed the fossils.

Daptocephalus on display. Photo by James Di Loreto, National Museum of Natural History.

Photo by Christian Kammerer

Close up of the erroneously reconstructed skull. Photo by Christian Kammerer.

Back at the museum, Nicholas Hotton prepared the specimen (USNM 299746) and determined it to be Daplocephalus leoniceps, one of the plethora of dicynodonts known from the Beaufort Group. Based on this classification, he reconstructed the badly damaged skull to resemble more complete Daplocephalus specimens, and added casts of Daplocephalus limbs. As it turns out, however, USNM 299749 is not a Daplocephalus – it is a somewhat distantly related dicynodont currently called Odontocyclops (also subject to change). To varying degrees, fossil mounts are hypotheses made of bone and plaster. They are based on the best information available at the time, but sometimes they need to be corrected. The NMNH “Daplocephalus” has been mislabeled and erroneously reconstructed for many years, but the current renovation of the NMNH fossil halls now presents an opportunity to deconstruct the specimen and study it up close.

Thanks to Christian Kammerer for kindly sharing images and insight on “Daptocephalus”!

References

Gilmore, C.W. (1919). A Mounted Skeleton of Dimetrodon gigas in the United States National Museum, with Notes on the Skeletal Anatomy. Proceedings of the United States National Museum 56:2300:525-539.

Kammerer, C. (2015). Personal communication.

Lay, M. (2013). Major Activities of the Division of Vertebrate Paleontology During the 1960s. http://paleobiology.si.edu/history/lay1960s.html

Marsh, D.E. (2014). From Extinct Monsters to Deep Time: An ethnography of fossil exhibits production at the Smithsonian’s National Museum of Natural History. http://circle.ubc.ca/handle/2429/50177

Sepkoski, D. (2012). Rereading the Fossil record: The Growth of Paleobiology as an Evolutionary Discipline. Chicago, IL: The University of Chicago Press.

4 Comments

Filed under exhibits, Extinct Monsters, field work, fossil mounts, history of science, mammals, museums, NMNH

Fossil sandboxes are terrible

Are these kids learning yet?

Are these kids learning yet? Source

Today, I need to take a moment to rail against one of the most reliably entertaining and beloved of museum attractions – fossil sandboxes. These activities are nearly ubiquitous at paleontology-related parks and museums, and some of them can be quite large and elaborate. There are a few variations, but they generally involve children using simple hand tools to dig through sand or loose gravel to uncover planted fossils (usually replicas, but I’ve seen a few places sacrifice real Pleistocene bones for this activity). Kids and families absolutely adore fossil sandboxes, and they generate all kinds of goodwill for the museums that feature them. In fact, many visitors have come to expect sandbox digs at paleontology exhibits, and become annoyed when one isn’t available.

I understand the appeal of sandboxes. For kids, they’re an opportunity to play pretend, engage in a physical activity after a day of looking at stuff, and generally have fun making a mess. Museum educators, myself included, are all about Gardner’s theory of multiple intelligences – the idea that different people learn best in different ways. While some easily absorb and retain information by reading or listening quietly, others prefer to solve a problem, talk through a topic with others, or engage in some sort of hands-on activity. That last one is called bodily-kinesthetic intelligence, and it is common among athletes and actors, among others. A fossil sandbox allegedly provides an activity for bodily-kinesthetic learners to develop and hone a physical skill related to the topic at hand. Kids get a chance to see and feel what it’s like to be a real paleontologist working in the field.

Except not really. A sandbox focuses kids’ attention, but that’s not the same thing as learning. What they’re doing has virtually nothing to do with actual paleontology. Digging is a comparatively minor part of field work – far more time is spent prospecting for fossils. When a team does start excavating, it’s conducted in a precise and organized manner, so that no taphonomic data is lost. By comparison, the sandbox arrangement conjures ideas of frantic treasure hunting, rather than piecing together and interpreting clues about past life. Furthermore, digging through loose sand is exceedingly rare in the field. If it were so easy to get at fossils, they would either have been found already or would have eroded away to nothing. A simulation is supposed to model a real event, or constrain that event to a limited set of variables. Sandbox digs do neither. Parents and caretakers might appreciate a place where kids can entertain themselves for a while, and educators can pat themselves on the back for providing a physically-involved experience. But there’s no use pretending that anybody is learning in what amounts to a themed playpen.

One alternative to the sandbox concept is provided by Thistle. He describes an activity in which he sets up a series of square meter “dig sites” within a room. Different specimens or artifacts are placed in each square. Participating students are then told that each square represents what was found in a layer of excavation, and are prompted to draw conclusions based on the different objects recovered from different strata. Students consider the spatial relationships among found objects, and discuss the roles of taphonomy and deep time. Unlike a sandbox dig, the results of this activity are comparable to those of a real excavation, and students are asking the same sorts of questions paleontologists would. Granted, Thistle’s activity requires much more guidance than a sandbox, but it’s a good example of something that participants might actually learn from.

The point is, we owe our audiences more than a mindless diversion with no bearing on actual science. And for that matter, we owe the scientists whose work we’re communicating more than a tacky, inaccurate simulation. If our goals are to inspire enthusiasm for science and to encourage young visitors to think scientifically, surely we can do better than a sandbox dig.

References

Thistle, P.C. 2012. Archaeology Excavation Simulation: Correcting the Emphasis. Journal of Museum Education 37:2:65-76.

1 Comment

Filed under education, exhibits, field work, museums, opinion, science communication