A Tour of Dinosaur Park

I generally use this blog to write about other people’s work, but today I’m going to turn the tables and share a project I’ve been involved with for the past couple years. As of this month, the new interpretive area at Laurel, Maryland’s Dinosaur Park is (just about) complete. I’m proud of my own contributions, and ecstatic with all the work my immeasurably talented and dedicated colleagues have done to bring this project to fruition.

Introductory sign at Dinosaur Park.

Dinosaur Park is a 41-acre site operated by the Maryland-National Capital Park and Planning Commission that preserves the most productive dinosaur fossil quarry in the eastern United States. Historically known as the Muirkirk quarry, this location has been a known source of dinosaur material since 1858. Fossils were first discovered by ironworkers collecting siderite for processing at the nearby Muirkirk ironworks. Later, O.C. Marsh, John Bell Hatcher, Charles Gilmore, Richard Lull and other prominent paleontologists would collect or study fossils from this deposit. The site was largely forgotten for most of the 20th century, but in the 1980s Peter Kranz, Tom Lipka, and others relocated it and began unearthing new material. Highlights included a massive sauropod femur, basal ceratopsian teeth, and the only Mesozoic mammal fossils ever found east of the Mississippi River.

The Muirkirk quarry produced some of the first dinosaur fossils to be scientifically studied in North America, and as such conceptions of its position in geologic time have understandably changed over the years. Marsh assumed the site was Jurassic in age because of the presence of sauropods, but Gilmore later revised it to Cretaceous. Based on pollen data, we can now place the site (and the Patuxant Formation as a whole) at the Aptian-Albian boundary in the Lower Cretaceous. Contrary to older proposals, the Muirkirk dinosaur fauna has more in common with the middle strata of the Cedar Mountain Formation in Utah than the Wealden Group in England.

Excavating a sauropod femur at the future site of Dinosaur Park in 1991. Photo courtesy of Pete Kroehler.

Dinosaur Park fossils aren’t much to look at, but they are remarkable for their diversity. This is a record of a complete ecosystem.

Thanks to some determined lobbying, the M-NCPPC (a bi-county organization that administers parks and urban planning) acquired the Muirkirk site and formally dedicated Dinosaur Park in October 2008. From its inception, Dinosaur Park was conceived as a citizen science project. During school programs and regularly scheduled open houses, visitors are invited to take part in ongoing prospecting for fossils. These programs emphasize stewardship of natural heritage, rather than treasure hunting, and to date visitors have discovered thousands of specimens. All of these fossils are accessioned into the county’s collection for research and education, and important specimens are turned over to the National Museum of Natural  History for final curation (search the NMNH Paleobiology collections database for “Arundel” to view this material).

Citizen scientists prospecting for fossils at Dinosaur Park.

Back in 2008, there wasn’t much to Dinosaur Park beyond the fossil site, a protective fence, and a small gravel parking lot. There were always plans to further develop the site, however, and thanks to the Park’s ongoing popularity we were able to kick off the phase II construction in 2016. The project involved developing the entrance area with exhibits and visitor amenities. There wasn’t a lot of space to work with, and the new facilities would have to do double duty: they needed to be useful both during guided programs and for drop-in visitors during the week (when the fossil site is closed). We ended up with an integrated, multipurpose space incorporating a series of exhibit signs, a garden of “living fossil” plants, a presentation area, a climbable dinosaur skeleton, two picnic benches, and a restroom and drinking fountain.

A number of additions were – to the probable annoyance of my colleagues –  the result of me piping up with a last-minute “wouldn’t it be cool if…” suggestion. That’s how we ended up with a life-sized image of the Astrodon femur discovered by the Norden  family in 1991, a trail of sauropod footprints, and a series of displays about baby sauropods (perhaps there’s a theme there?).

The garden, play area, and other new facilities at Dinosaur Park.

One of several new interpretive signs.

The content of the exhibit signs was directly informed by formal and informal visitor surveys. We took note of visitors’ most frequent questions, as well as which parts of our old displays were being ignored or misunderstood. For example, lots of visitors wanted to know about the biggest or most important fossils found at the Park. These weren’t illustrated on our old signs, but they’re integral parts of the new ones. Meanwhile, very few visitors were engaging with content about local geology, so those sections ended up being cut.

A section of Shoe’s masterful Cretaceous Maryland mural. Artwork by Clarence Schumaker, courtesy of the M-NCPPC.

For me, and hopefully many visitors, the highlight of the new displays is the spectacular mural created by Clarence “Shoe” Schumaker. Shoe has produced artwork for numerous parks and museums, including several National Park Service facilities, but to my knowledge he had never painted dinosaurs before. Nevertheless, he approached the project with unquenchable enthusiasm, determined to get every detail correct. Working with Shoe was a fantastic experience – I would send him my hasty sketches and random ideas and he would somehow turn them into spectacular imagery. Our goal was to produce an image that would be at home in any nature center. This is an overview of an ecosystem, and the presence of dinosaurs is only by happenstance. The final piece is mesmerizing, and I think its hyper-detailed placidity gives it a certain Zallinger-like quality.

The finished mural was so cool that I couldn’t help but ask for more. One under-reported virtue of the Dinosaur Park collection is that we have sauropod remains from a variety of ages and sizes – from 70-foot adults to tiny hatchlings. I suggested a single image of a baby sauropod to help illustrate these animals’ remarkable growth potential. Shoe turned around and produced two full paintings and a life-sized model. The man is seriously unstoppable.

Shoe’s 2D and 3D baby Astrodon art. Artwork by Clarence Schumaker, courtesy of the M-NCPPC.

It’s been a wonderful experience seeing the Dinosaur Park interpretive area come together, and the few places where compromises were made are vastly overshadowed by the many prominent successes. Dinosaur Park is an important resource, both for growing our knowledge of prehistory and for introducing the local community to the process of scientific discovery. I can’t wait to see it continue to grow!

2 Comments

Filed under citizen science, Dinosaur Park, dinosaurs, education, exhibits, field work

Do fossil exhibits have too many dinosaurs?

Reflexive discussion about the practice of communicating paleontological science to general audiences has become more common recently – there was even a two-day Popularizing Paleontology workshop in London last year.  It’s about time – paleontology encompasses some of the most important questions about the world around us, from how life evolves to how ecosystems respond to planetary changes. Paleontology is the study of how the world came to be, and our understanding of the natural world is hopelessly incomplete without it. For the larger public, however, paleontology is synonymous with dinosaurs, and this can be a problem. Dinosaurs are awesome, but they are but one branch of the tree of life. And while their 160 million year dominance is significant, the era of non-avian dinosaurs is only a fraction of the 3.5 billion year history of life on Earth. Their story is not the only story worth telling.

Why the outsized fascination with dinosaurs? I suspect it’s the result of a self-perpetuating cycle. Human curiosity peaks somewhere between subjects an individual knows well and subjects that are completely new to them. In other words, people prefer to learn about things they are already familiar with. That means that museum visitors are drawn to dinosaurs like Tyrannosaurus and Apatosaurus because they already know something about them. Meanwhile, other fascinating creatures are bypassed precisely because visitors lack an existing mental framework to contextualize them. Somewhat paradoxically, in the sphere of informal learning, familiarity is king.

Generally, educators have been happy to indulge the public craving for dinosaurs*. In a must-read blog post resulting from the aforementioned Popularizing Paleontology workshop, Mark Witton describes dinosaurs as “one of the most important and potent tools at our disposal” because they are “gateways” to discussions about evolution, extinction, deep time, and even the nature of the scientific method. Witton then unpacks this conventional wisdom, highlighting several ways that relying on the built-in appeal of dinosaurs may not be as effective as traditionally assumed. It’s a fascinating discussion that I highly recommend reading.

Witton’s post got me thinking that if we’re going to consider easing up on dinosaurs in outreach efforts, we need some sort of baseline to firmly establish if (or the degree to which) they are being overused. One argumentum ad nauseum in these conversations is that museum exhibits are overstocked with dinosaurs. Allegedly, exhibit designers have responded to the popularity of Mesozoic dinosaurs by devoting an excessive amount of exhibit space to them, while relegating Paleozoic and Cenozoic specimens to the collections. This supposition can be (very, very crudely) tested by comparing the percentage of available exhibit space to the percentage of time non-avian dinosaurs dominated the planet. Assuming that exhibits should not be expected to allocate proportional space to pre-Phanerozoic life, I figure that the “Age of Dinosaurs” should cover 30-35% of an exhibit about life since the Cambrian (~160 million out of 541 million years).

To satisfy my own curiosity, I’ve gone and checked this figure against the three big paleontology exhibits with which I am most familiar. The slapdash maps below are traced from museum guides available online, with percentages calculated with the help of the Photoshop ruler tool. Green denotes dinosaurs, brown represents Cenozoic mammals, and blue encompasses everything else, including Paleozoic fossils, overviews of life over time, and non-dinosaurian Mesozoic life.

Field Museum of Natural History

Space allotment by subject in Evolving Planet at the Field Museum of Natural History. Dinosaurs: 31%; Mammals: 31%; Other: 38%.

Let’s start with the Field Museum, since it’s the most straightforward. The Evolving Planet exhibit (on view since 2006) occupies three elongated halls totaling 27,000 square feet. Evolving Planet is a classic “walk through time”-style exhibit, and the Paleozoic, Mesozoic, and Cenozoic are given remarkably equal amounts of floor space. Even though the central hall is larger than the other two, it is partially occupied by plants, marine animals, and early Triassic weirdos. At 31% of the total exhibit, dinosaurs are right about where they should be.

National Museum of Natural History

Space allotment by subject in the old fossil halls at the National Museum of Natural History. Dinosaurs: 15%; Mammals: 43%; Other 42%.

The old paleontology halls at the National Museum of Natural History (closed since 2014) demonstrate what happens when a museum goes without a dinosaur specialist for three quarters of a century. Cenozoic mammals and Paleozoic marine life were given room to spread out, while the dinosaurs were crowded into a paltry 15% of the available 31,000 square feet. It’s worth noting that unlike the Field Museum’s current fossil halls, which were designed from the ground up in the early 1990s, the NMNH paleontology wing was built up in a piecemeal fashion over the course of a century. The space was repeatedly carved into smaller sections to make room for new exhibits, and designers had to work around existing specimens that were too expensive or difficult to move. By the 1980s the halls had become something like a maze, and much of the available space wasn’t used very efficiently. Still, the consistently meager amount of space allotted to dinosaurs made it clear where the curators’ interests lay.

American Museum of Natural History

gallery usage at amnh

Space allotment by subject on the fourth floor of the American Museum of Natural History. Dinosaurs: 40%; Mammals: 30%; Other: 30%.

At the American Museum of Natural History, fossil exhibits are spread across six halls on the fourth floor. The last substantial renovation was completed in 1995, although a titanosaur skeleton was added to the Orientation Hall in 2016. This exhibit differs from its counterparts at FMNH and NMNH in that it’s arranged phylogenetically, rather than chronologically. It is also limited to vertebrate evolution, so plants and invertebrates are not included. With those caveats in mind, dinosaurs occupy 40% of the 65,000 square feet of exhibit space.

So, do museums have too many dinosaurs? Based on this exercise, these three museums have just the right amount (or even too few). The proportion of space allocated to dinosaurs closely matches the time span of their ecological dominance during the Phanerozoic. The percentage of dinosaur space at AMNH is on the high side, but if we also incorporated the square footage of the human evolution exhibit and the assortment of marine invertebrate fossils on display elsewhere in the museum, that percentage would decrease significantly. In fact, if this exercise has revealed anything, it’s that Cenozoic mammals get an awful lot of space, given that the “Age of Mammals” takes up only 13% of the Phanerozoic.

Again, this is an extremely crude way to measure dinosaur-themed engagement efforts. One might also look at the number of specimens on exhibit, or the newness of the displays (are dinosaurs getting updated more frequently, while other exhibits are left to languish?). And that’s to say nothing of outreach beyond the permanent exhibits. Still, I hope this is a helpful starting point. At the very least, it suggests to me that “are museums over-emphasizing dinosaurs?” is not the only question worth asking. We also need to tease out if audiences are ignoring non-dinosaur paleontology outreach efforts, and if there’s a way to counter that.

*It’s a tired but worthwhile point that comparatively few people can articulate what a dinosaur actually is. For many, anything big and dead (and displayed in skeletal form) is a dinosaur. This complicates the matter, because when people ask for dinosaurs they may actually mean prehistoric animals.

6 Comments

Filed under AMNH, dinosaurs, exhibits, FMNH, mammals, museums, NMNH, systematics

Acrocanthosaurus, the Terror of the South

Acrocanthosaurus at the North Carolina Museum of Natural Science. Photo by the author.

Following yesterday’s travelogue about the North Carolina Museum of Natural Science (NCSM), I thought I’d go into a little more depth about the museum’s star fossil. One of only five Acrocanthosaurus specimens ever found, NCSM 14345 is the most complete and the only one on public display. The mounted skeleton has been at the Raleigh museum since 2000. Among other things, its story highlights the challenging relationship between academic paleontologists and the private fossil trade.

Despite its current home in North Carolina, this Acrocanthosaurus hails from the town of Idabel in southeast Oklahoma, more than a thousand miles away. Avocational fossil hunters Cephis Hall and Sid Love (both now deceased) discovered the skeleton in 1983. After making an arrangement with the landowner, the pair spent the next three years carefully excavating the find.

The Acrocanthosaurus was recovered from the early to mid Cretaceous rocks of the Antlers Formation. Found in a deposit of fine sandstone and dark mudstone alongside lots of lignitized wood, the animal’s final resting place was probably a stagnant swamp or pond. Additional evidence for the depositional environment comes from the way the bones are preserved. They contain a great deal of pyrite, and were encrusted with dense concretions of calcium carbonate. Both of these minerals are formed by bacteria blooms in low-oxygen locales, such as the mud at the bottom of a swamp. Gouges in the skull, ribs, and foot indicate scavengers – crocodiles and possibly other Acrocanthosaurus – were feeding on the carcass before it was buried.

All told, the find included a complete skull (the only one of its kind), the pelvis and sacral vertebrae, both arms and shoulder girdles, the right leg, and parts of the rib cage and tail. Paleontologist Richard Cifelli of the Sam Noble Museum in Norman, Oklahoma became aware of the discovery in 1987. Cifelli initially hoped that the museum could acquire the specimen for study and safekeeping, but Hall and Love’s asking price was beyond their means. Instead, Hall and Love loaned the fossils to the University of Texas. They were unsatisfied with this arrangement, however, and drove down to Austin to retrieve their dinosaur (the details of this event are apparently contentious). Hall and Love then sold the fossils to Geological Enterprises, a for-profit outfit based in Ardmore, Oklahoma, for $225,000 plus the promise of a cast once the prep work was completed. Geological Enterprises founder A. Allen Graffham gave the specimen the nickname “Fran,” after his wife.

The meticulously reconstructed Acrocanthosaurus skull. Photo by the author.

The calcium carbonate concretions and heavy pyrite content made the Acrocanthosaurus a particularly challenging fossil to prepare. The concretions are like natural cement and are very difficult to remove without damaging the bones. Meanwhile, pyrite breaks down into sulfur when exposed to oxygen and humidity, which can cause bones to crumble. In 1991, Graffham outsourced the preparation job to the Black Hills Institute in Hill City, South Dakota. Terry Wentz led the preparation project at BHI, which was reportedly one of the most challenging assignments of his career. The concretions encrusting the bones were so dense that they often had to be ground off, rather than chipped. This process could take several hours just to remove a few millimeters of calcium carbonate. To make matters worse, removing pyrite releases acidic particulates into the air. Preparators had to wear respirators and the bones had to be prepared in vacuum boxes.

The most daunting part of the project was reconstructing the specimen’s beautiful and intact skull. Although virtually complete, the skull was found crushed flat. Everyone involved agreed that the skull would be more informative and more impressive if it could be reinflated, but that was easier said then done. Over a year of work went into carefully separating the individual skull bones and reassembling them into their life position.

After five years of what was probably one of the most difficult fossil prep jobs ever attempted, the Acrocanthosaurus was ready to be sold. However, Graffham initially had trouble finding a buyer. There were interested parties in Japan, but he reportedly did not want the fossils to leave the United States.

On October 4, 1997, another well-preserved theropod skeleton went up for auction at Sotheby’s in New York. Sue – the most complete Tyrannosaurus ever found – was already legendary thanks to the protracted legal battle over the fossils. Now that the one-of-a-kind skeleton was being sold at a high profile auction, paleontologists feared that it would disappear into the hands of a private collector. On the night of the auction, most of the museums and other public repositories in the running were outbid within minutes. The North Carolina Museum of Natural Science appeared to be the only museum left after the price topped $5 million, and so the hopes of the paleontological community rested on their shoulders. NCSM dropped out at $7.2 million, and moments later Richard Gray, a veteran of art auctions, won Sue on behalf of a mysterious client. Happily, that client turned out to be the Field Museum (with financial backing from McDonald’s and Disney), and so Sue ended up in a public repository after all.

The Acrocanthosaurus and its sauropod companion can be seen from the ground and from a balcony. Photo by the author.

Still, NCSM had been willing to stake an enormous amount of money on a name brand dinosaur, and they weren’t about to give up. Two months after the Sue auction, the Friends of the North Carolina Museum of Natural Sciences bought the Acrocanthosaurus from Graffham’s company for $3 million. BHI prepared the mount, which debuted along with the rest of the museum’s new building on April 7, 2000. It may not be coincidental that this was just one month before the mounted skeleton of Sue was unveiled in Chicago.

The Acrocanthosaurus occupies a well-lit, circular atrium on the museum’s third floor. Visible both from the ground and from a balcony, the mount is accompanied by a rather goofy-looking sauropod statue. Model pterosaurs circle overhead on a rotating arm, and recreations of theropod and sauropod tracks from Dinosaur State Park in Paluxy, Texas can be seen throughout the room. The original skull is on display in a case outside the atrium.

Sadly, pyrite deterioration has continued to ravage the delicate fossils. Several of the original bones once included in the NCSM mount have been retired to the collections for safekeeping. As of this year, only the arms, right foot, and vertebrae appear to be original material. The rest have been replaced with casts.

Exhibit signs have also changed since the 2000 debut. NCSM exhibits staff learned from surveys that 80% of visitors thought the dinosaur on display was a T. rex, and plenty more assumed the whole skeleton was a replica. In response, most of the signage was redesigned. The displays now highlight the differences between “Acro” and T. rex, and highlight the exceptional rarity of the museum’s Acrocanthosaurus specimen.

A number of NCSM 14345 casts are on display at museums throughout North America, including the Virginia Museum of Natural History, the Houston Museum of Nature and Science, and the Kenosha Public Museum. As promised, Hall and Love were awarded a complete cast of the skeleton,  but without the means to assemble or display it, the replica sat in storage for several years. Eventually, local third and fourth graders successfully raised the $150,000 needed to display the cast at the Museum of the Red River in Idabel.

Acrocanthosaurus cast at the Virginia Museum of Natural History. Photo by the author.

Acrocanthosaurus cast at the Houston Museum of Nature and Science. Photo by the author.

Fossils are precious remains of real organisms, clues about ecosystems from long ago and the making of the world as we know it today. In an ideal world, all significant fossils would, from the moment of their discovery, be accessioned and held in a public collection at a museum or university. A fossil sitting on somebody’s mantelpiece or waiting to be sold at auction is doing nothing to grow our collective knowledge. However, public institutions don’t have the resources to find and excavate every fossil, and in the United States fossils found on private land belong to the landowners. That means that, for better or worse, there is a thriving commercial market for rare fossils.

A plurality of paleontologists do not engage with fossil dealers for ethical reasons. Indeed, even if they wanted to buy rare specimens, academic institutions can seldom match the prices individual collectors are willing to pay. Museums don’t usually have $3 million sitting around. That kind of money could fund a whole research team for years. As such, we’re left with a Catch-22. Paleontologists want important fossils to be in museums where they can be seen and studied by everyone. But if those fossils are in private hands, buying them would support and legitimize the industry that is also keeping fossils out of public collections. If there was an easy solution, it would have been worked out by now.

Nevertheless, serendipity occasionally strikes. This seems to have been the case with the Acrocanthosaurus. News about Sue generated interest in buying a name-brand dinosaur, and donors were willing to put up the money to get the specimen for NCSM. The skeleton is now in a public collection, at a free museum, no less. Meanwhile, the collectors were well compensated for their considerable investment. It’s hard to chalk that up as anything but a win, all around.

References

Carpenter, K. 2016. Acrocanthosaurus Inside and Out. Norman, OK: University of Oklahoma Press.

du Lac, J.F. 2014. The T. rex that got away: Smithsonian’s quest for Sue ends with different dinosaur. The Washington Post

Eddy, D.R. and Clarke, J.A. 2011. New Information on the Cranial Anatomy of Acrocanthosaurus atokensis and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda). PLoS ONE 6:3:e17932.

Lovelady, W. 2012. Every Step You Take. Exhibits and Emerging Media, North Carolina Museum of Natural Science. 

4 Comments

Filed under dinosaurs, fossil mounts, museums, reptiles, theropods

North Carolina Museum of Natural Science

This pregnant right whale was killed when it was hit by a boat. Displayed with the fetus skeleton in situ, it now serves as a species ambassador.

The North Carolina Museum of Natural Sciences has been on my list of must-see museums for some time, and I finally had a chance to visit over Memorial Day weekend. Founded in 1879 as the North Carolina State Museum, the institution was initially a showcase for local agricultural and mineral products. Over the years, the interests of both the curators and the visiting public gradually nudged the museum in the direction of more generalized natural history. Now the largest natural history museum in the southeast, NCSM hosts a world-class research staff overseeing a collection of 1.7 million specimens. Since 2000, the museum has occupied a four-story facility in downtown Raleigh. A second wing, called the Nature Research Center, opened in 2012. There are also two satellite nature centers outside the city (which I did not visit) that are under the NCSM banner.

An introduction to geologic time.

First things first: the paleontology exhibit is quite good, although somewhat compact. Perhaps too compact, given its popularity and the amount of exhibit space the museum has to work with overall. Coming up the escalator to the 3rd floor, visitors are strongly encouraged to enter Habitats of North Carolina, a colorful and attractive walk through time. The initial spaces cover the basics. First, a series of pillars introduce the primary stages of life on Earth. This is followed by exhibits about where fossils come from, how we know how old fossils are, and so on. I particularly liked the “What to Fossils Tell Us?” display. Here, a grid of spinning cubes each hold small, conventional fossils. Visitors can rotate the cubes around to see that even these modest-looking remains can be very informative. For example, leaves and pollen provide detailed climate information, and a large croc scute suggests that a substantial body of water was present.

Prestosuchus in the Triassic scene. This appears to be a cast of the Brazilian AMNH 3856.

Edmontosaurus and Albertosaurus casts dominate the Cretaceous tableau.

The rest of the exhibit is built around a series of tableaus in which mounts and models of charismatic animals are placed in landscapes of replica foliage. Small, illustrative fossils are in cases throughout. First up is a cast of Prestosuchus, lurking among some Triassic horsetails. Next, Edmontosaurus, Albertosaurus, and Pachcephlosaurus casts populate the Cretaceous alongside lovely ginkgos and magnolias. A baby hadrosaur model at the feet of the Edmontosaurus was apparently stolen (and recovered) in 2012. The famous Willo – a Thescelosaurus skeleton that maybe/probably doesn’t have mineralized heart tissue in its chest – is on display under glass.

Did you know that most modern fish groups evolved only 20 million years ago? I didn’t!

A ground sloth in the standard pole-dancing pose.

Moving into the Cenozoic, a set of attractive and informative cases describe the origin and evolution of modern fishes and whales. This is followed by glass tunnel through a life-sized diorama of a late Eocene sea. The models here are spectacular, but the space is altogether too dark. I found it difficult to see the diorama, much less read the signs. The final section is home to a real ground sloth skeleton. This is a composite of several specimens recovered in 1999 near Wilmington, North Carolina. Happily, the reconstructed portions of the mount are distinct and easy to see. Habitats of North Carolina ends on an eccentric note with a set of mannequins in pioneer garb discovering fossils in a creek bed. I’m not really sure what this adds to the exhibit narrative.

Acrocanthosaurus holds court in a sunny atrium all to itself.

The star fossil at NCNM is the only real Acrocanthosaurus on display anywhere in the world. Avocational fossil hunters Cephis Hall and Sid Love found this rare skeleton in Oklahoma in 1983. Unfortunately, a bad case of pyrite disease made the fossils an absolute nightmare to prepare, and it exchanged hands several times before ending up with the Black Hills Institute in South Dakota. In 1997, an anonymous donor purchased the skeleton on behalf of NCNM for $3 million, shortly after the museum came in second place in the bidding war for Sue the T. rex.

Acrocanthosaurus is a favorite of mine, and the mount is beautiful. The sunny atrium it’s situated in makes for an attractive display, but I wish it wasn’t so disassociated from the main paleontology exhibit. I’m told the mount included more original material when it debuted in 2000, but the creeping specter of pyrite disease has necessitated the removal of several bones for restoration and safekeeping. Be sure to see it soon, before the rest of the mount gets replaced with casts!

Whales: behold their majesty.

The paleontology exhibits are nice and all, but the real showstoppers at NCSM are the whales. No less than six giant whale skeletons are on display. Suspended over a corridor of sorts, the whales can be viewed from below or from a 2nd story mezzanine. Many museums have a whale skeleton or two, but I’ve never encountered this many cetecean skeletons in one place. From the utterly insane-looking right whale to the colossal blue whale, they are stunning to behold. Be sure to factor in plenty of time to simply stare. Immersive dioramas of local habitats, live animal exhibits, and a look at collecting and exhibition practices past and present round out the museum’s “old wing.”

As mentioned, however, a whole new wing of exhibits opened in 2012. Called the Nature Research Center, this is basically the interactive, citizen science-driven Museum of the Future that educators (including myself) have been demanding for years. This three story space is all about getting visitors involved in science. There are multiple drop-in “labs” where knowledgeable staff lead visitors through mini-experiments, designed to get people thinking scientifically. There’s a molecular lab where visitors can isolate and analyze DNA samples. There’s a digital imagery space where visitors can practice using GIS tools, or explore the possibilities of 3-D printing. And there’s a Q?rius-like collections library, where visitors can check out and study real bones, furs, minerals, and fossils. The Nature Research Center also includes several fishbowl-style labs where visitors can watch museum staff and volunteers at work. Even the highly interdisciplinary static displays are less about the “what” and more about the “how”: the tools, techniques, and people that make science possible.

One of the lab spaces in the Nature Research Center.

Distressingly, on the day I visited, the traditional museum exhibits were crowded with visitors, but the Nature Research Center was nearly deserted. Since I was there on a holiday weekend, I was probably seeing a skeleton-crew version of the staff that is usually facilitating the interactive spaces. Still, the Nature Research Center is the embodiment of the modular, interactive exhibits that educators dream about. To see it empty while the story and object-driven exhibits were packed is somewhat disconcerting.

As the scientists say, though, a single anecdotal experience is not data. I’d be very interested to learn how this pioneering exhibit space holds up in the long run.

Leave a comment

Filed under dinosaurs, education, exhibits, fossil mounts, mammals, museums, opinion

Extinct Monsters at PSW

The historic Basilosaurus at NMNH. Photo by the author.

I realize the blog has been quiet lately. The usual excuses apply – work responsibilities, preparing to relocate, and of course the crushing despair of our present political reality. I do have a fun announcement for people in the Washington, DC area, however. I’ll be speaking at the April 19th meeting of the Paleontological Society of Washington, which is held after hours at the National Museum of Natural History. Meetings are open to all. The full announcement flyer is here. Many thanks to the PSW for having me! The talk abstract is below.

Extinct Monsters: The Hybrid Identities of Fossil Mounts

Mounted skeletons of dinosaurs and other prehistoric animals are an enduring symbol of natural history museums. However, fossils do not come out of the ground bolted to armatures. These iconic displays occupy a paradoxical middle ground between scientific specimens and cultural objects. Many have endured for generations, taking on second lives independent of their original purpose. This presentation will unpack the densely-layered identities of fossil mounts, tracking their scientific, artistic, and cultural significance from the 18th century to today. 

Leave a comment

Filed under Extinct Monsters, fossil mounts, history of science, museums

Jurassic Museum

Teaser image for Jurassic Park 5, via Colin Trevorrow/Universal.

Well, this is a doozy. Jurassic World director Colin Trevorrow tweeted the above image this afternoon, which is a teaser for the upcoming “Jurassic World 2” (Jurassic Park 5?). The film doesn’t have an official title yet, but apparently they started shooting on February 23rd and are aiming for a June 2018 release.

The Victorian-style museum gallery piqued my interest immediately. Since this is the first promotional image they put out, it stands to reason that natural history exhibits might play a significant role in the film. Is this a flashback to a formative experience for a main character? Or is it a brief moment of quiet before Chris Pratt smashes through the wall riding a mutant cyborg T. rex? Both are probably equally likely at this point, but there are still a few things worth noting.

First, this scene is plainly referencing the century-old association in the public consciousness between museums and dinosaurs. When we think of museums, we think of dinosaurs, and vice versa. This is no accident – as I’ve discussed here on many occasions, dinosaurs (and their mounted skeletons in particular) played a central role in defining the modern museum at the start of the 20th century. The first Jurassic Park film played with this iconography in its classic finale, when the flesh-and-blood Tyrannosaurus and Velociraptor literally obliterate a pair of skeletal mounts. In that case, the implication was clear: the living, cloned dinosaurs represent new technology and scientific progress smashing the old and obsolete incarnations of paleontology to bits.

Y’know, this scene. (Universal).

Is “Jurassic World 2” pushing a similar message, casting the iconography of a museum hall as a past doomed to extinction? Maybe. The Victorian design elements – wood paneled walls, skeletons on open pedestals in orderly rows – distinctly evoke museums of the past. You’d be hard pressed to find an exhibit that looks like that today. Perhaps the filmmakers are using the Victorian iconography to enhance the impression of dusty obsolescence. Or maybe the baby boomer producers are recreating the sort of museum they remember from their childhood. The primary counterpoint is that the mise en scène on display here is stately and impressive. That dramatically-lit ceratopsian skull looks formidable, not at all like something shrinking back into history.

Let’s talk about that ceratopsian skull for a hot sec. The other skeletons are (perhaps incredibly) reasonably accurate representations of identifiable dinosaurs. We’ve got a tyrannosaur, a hadrosaur, and a dromaeosaur on the left, and what looks like Euoplocephalus, Kosmoceratops, and Protoceratops on the right. The skull in the center stands out as the sole fanciful element in the scene. It looks like an oversized, exaggerated Triceratops, with extra-long, tapering brow horns and a frill studded with spikes. Jurassic World established fantasy dinosaurs as being part of the Jurassic Park universe, so it’s possible this represents some kind of new, fictitious hybrid.

Charles Knight’s 1897 Agathaumas painting. Source

However, I was immediately reminded of Charles Knight’s classic take on Agathaumas. E.D. Cope named Agathaumas sylvestris in 1872, based on a pelvis and a number of vertebrae discovered in southwest Wyoming. It was technically the first ceratopsian dinosaur to be named and described, but without a skull, Cope had little idea of what the animal looked like (today, it’s considered a synonym of Triceratops).  Charles Knight depicted imagined the animal as a sort of spiny uber-Triceratops. His striking reconstruction was copied almost exactly for the Agathaumas that appeared in 1925’s The Lost World.

Triceratops and Agathaumas models, sculpted by Marcel Delgado and animated by Willis O’Brien. Source

It would be beyond awesome if the dramatic ceratopsian skull was meant to be a throwback or nod to the mythic Agathaumas. Or perhaps I’m reading too much in to it.

1 Comment

Filed under dinosaurs, exhibits, fossil mounts, marginocephalians, movies

Phylogenetics is Moon Man Talk

Phylogenetics is the study of the evolutionary history and relationships among extant and extinct organisms. More than any other organizational scheme, this is the way biologists think about the living world. In vertebrate paleontology in particular, an understanding of the evolutionary relationships of animals as identified via minute anatomical details is absolutely fundamental to our science. One might even argue that most new discoveries and inferences in this field are meaningless without some knowledge of the basic shape of the tree of life.

I’ve spent about eight years so far teaching science in museums, parks, and classrooms. And based on my anecdotal experience, most discussion of phylogeny comes across as incomprehensible babble to a plurality of people. For instance, one of the most commonly used definitions of “dinosaur” among paleontologists is “the most recent common ancestor of Triceratops and modern birds, and all it’s descendants” (there’s also the similar “most recent common ancestor of Megalosaurus and Iguanodon, and all it’s descendants”). This definition is not meaningful to most people. As evidence, I submit the following set of questions, all of which I have been asked by intelligent and well-meaning adults:

  • Did whales and dolphins evolve from marine reptiles?
  • Did giraffes evolve from sauropods?
  • Are [dromaeosaurs] related to cats?
  • Are dinosaurs related to sharks?
  • How can birds be dinosaurs if dinosaurs are reptiles?
  • Did the plant-eating dinosaurs evolve into mammals?
  • Are bats a kind of bird?
  • Are pterodactyls a kind of bird?

I don’t mean to ridicule or disparage people for asking these questions. Again, these all come from educated adults – museum and park visitors, undergraduate students, T.A.s, and at least one veterinarian! While these questions clearly show unfamiliarity with evolutionary relationships and how evolution works in general, they also show an effort to build a logical framework when none is available. For example, when a person asks if whales are descended from marine reptiles, he or she is hypothesizing that all large marine animals are related. This is incorrect, but it’s a sensible connection to make (and one that past naturalists have certainly explored).

For science communicators, this deficit of phylogenetic understanding is a serious problem which continuously undermines attempts to interpret zoology and paleontology. For example, think about how little meaning a statement like “Dimetrodon isn’t a dinosaur” has to somebody who can’t articulate what a mammal is or what a dinosaur is, much less the evolutionary distance between both groups. This is what we should expect from most of our audience, which means there is always a lot of catch-up work to do when explaining something as simple as the basic identity of a given organism. By the time you’ve satisfactorily defined “dinosaur” (good luck with that), explained the synapsid-diapsid split, discussed the tree of extinct stem-mammals, and positioned each of these things in deep time, you’re five minutes deep into a lecture when all you were asked was “what is it?”

USNM 8635, a handsome non-dinosaur. Photo by the author.

USNM 8635, a handsome non-dinosaur. Photo by the author.

How can we solve this conundrum? The first step is to divide the issue into a number of smaller problems:

  • People don’t understand the fundamentals of how evolution works
  • People are unfamiliar with basic vertebrate classification
  • People lack knowledge of key evolutionary events through deep time
  • People don’t understand what traits are significant when assessing evolutionary relationships

The first problem is well known and has been discussed in-depth elsewhere (e.g. MacFadden et al. 2007, Spiegel et al. 2006, Spiegel et al. 2012), so I’m going to breeze over it and focus on the other three.

Basic Vertebrate Classification

It’s easy to toss out words like “mammal”, “reptile”, and “amphibian”, and take for granted that your audience will know what they mean. But even the most basic elements of vertebrate classification are specialized knowledge, and science communicators would do well to remember it. When I was teaching an undergraduate human anatomy course, I found that most of the class was familiar with the word “mammal”, and could name some examples. However, the students couldn’t articulate what sets mammals apart from other animals, and the relationship of mammals to other vertebrates within the tree of life was all new to them.

I think this is fairly typical, even among individuals with a background in biology. People are introduced to these categories in grade school, and you’d be hard-pressed to find somebody who couldn’t tell you whether (say) a cat is a mammal or a reptile. What is missing is what that actually means. We can’t assume that just because somebody knows a cat is a mammal, they know that fur and milk glands (much less auditory ossicles, a solid mandible, and heteromorphic teeth) are things to look for when categorizing mammals. They also may not know that “mammal” is an evolutionary group – that all the animals that fall under this banner are more closely related to each other than they are to anything else. No mammal is going to spontaneously become a bird or a fish. This is obvious to specialists, but not to most of our audience.

Evolutionary History Through Deep Time

The situation is further complicated by the element of time. Somebody may know that a modern cat and lizard differ in several fundamental ways, but do they know that both groups still evolved from a common ancestor? Or that said ancestor lived more than 300 million years ago? Unfortunately, much of the public would appear to lack any knowledge of how the past is related to the present. I’ve had visitors insist on calling fossil turtles “dinosaur turtles” and Teleoceras a “rhino-saur.” For them, extinct animals (all labeled “dinosaurs”) are a category all their own, wholly independent from the categories that describe modern animals.

For specialists, it’s obvious that modern animals exist within a continuum that extends into the deep past. It’s also obvious that groups like “mammals” and “reptiles” had starting points, and are embedded within larger, more ancient groups. None of this can be considered common knowledge, but it’s critical to any discussion about the identity or categorization of a given taxon.

better than a tree

Box diagrams are a simple and intuitive way to ground students’ understanding of the diversity of life.

How can educators hope to cover so much ground without confusing, distracting, or alienating their audiences? One option is to use a cladogram, or evolutionary tree. Trees are absolutely the most precise and accurate way to portray relationships over time, but as Torrens and Barahona demonstrate, they are regularly misinterpreted by the public. When I’m dealing with a general audience, I prefer box diagrams like the one above. Boxes within boxes show tiers of relatedness in a way that is more intuitive and easily understood than a tree. Box diagrams allow educators to cover a lot of unfamiliar ground quickly, and it’s easy to test visitors’ comprehension by asking them to point to where an example taxon should be placed. While this visualization of vertebrate relationships lacks a time axis, people can at least grasp the relative order in which each group evolved (fish before amphibians, amphibians before reptiles and mammals, etc).

How Scientists Discover Evolutionary Relationships

Going back to the list of misguided questions at the top of this post, we can generally surmise the thought process that led to each inquiry. The person who asked if whales and marine reptiles are related was classifying based on shared habitat. The person who asked if giraffes evolved from sauropods was classifying based on similar body shape. We can also see classifications based on diet, and based on shared activities, like flight or attacking prey with clawed feet. All these questions reflect a misunderstanding of what kinds of traits researchers look for when working out evolutionary relationships. So how do we quickly and clearly explain which traits are relevant, and which ones are not?

This is a tricky problem, and one I have not found a perfect solution to. The most important distinction is between plesiomorphic and apomorphic traits: plesiomorphic traits are inherited from an ancestral form, while apomorphic traits are novel developments. Put simply, working out a phylogenetic tree is all about grouping organisms based on shared apomorphies. The more apomorphic traits between two species, the more closely related they are. Once introduced, this is a fairly intuitive distinction. You don’t even need to use the jargon – “old traits” and “new traits” will often suffice. Going back to our  problem of defining Dimetrodon, we can clarify that the lizardy shape and general toothiness are “old traits” – so they don’t tell us much about what the animal actually is. Instead, scientists look at “new traits”, like the number of postorbital fenestrae, to work out Dimetrodon‘s evolutionary affinities.

All of this is a long-winded way of saying that relating phylogeny to the public is challenging, but very important. Too often, science educators assume visitors have more background than they do, and the discussion comes across as so much moon man talk. Alternatively, educators push past complicated parts too quickly, which leads to confusion or misunderstanding. Ultimately, being a good educator comes down to two things: knowing your content and knowing your audience. Both are equally important, and both need to be practiced and refined in equal measure to ensure successful communication.

References

Macfadden, B.J., Dunckel, B.A., Ellis, S., Dierking, L.D., Abraham-Silver, L., Kisiel, J., and Koke, J. 2007. BioScience 57:10:875-882.

Spiegal, A.N., Evans, E.M., Gram, W., and Diamond, J. 2006. Museums and Social Issues 1:1:69-86.

Spiegel, A.N., Evans, E.M., Frazier, B., Hazel, A., Tare, M., Gram, W., and Diamond, J. 2012. Changing Museum Visitors’ Conceptions of Evolution. Evolution: Education and Outreach 5:1:43-61.

Torrens, E. and Barahona, A. 2012. Why are Some Evolutionary Trees in Natural History Museums Prone to Being Misinterpreted?” Evolution: Education and Outreach 1-25.

13 Comments

Filed under education, opinion, science communication, systematics