Dinosaurs of the Field Museum — Part 1

About a year ago, I wrote this post about the dinosaurs of the London Natural History Museum, admittedly in a bit of a hurry. The post has proven very popular, which leads me to conclude there’s interest in more “quick bite” articles about the specimens on display at various museums. I’ll see about putting together more of these in the future.

For now, I’ll start close to home, with the dinosaurs on display at Chicago’s Field Museum of Natural History (FMNH). This entry is about the most notable specimens that were acquired outside the living memory of current staff. I’ll follow up with an article about more recent acquisitions sometime soon. It’s important to note that while I’m focusing on dinosaurs here, the real meat of the Field Museum’s vertebrate paleontology collection is in its Cenozoic holdings. Those too will need to be a topic for another time.

Brachiosaurus altithorax (P 25107)

Menke poses with the Brachiosaurus humerus, unwittingly creating an image that every subsequent sauropod worker is obligated to recreate. Photo © Field Museum.

The first dinosaur discovered by Field Museum paleontologists was nothing less than the biggest land animal known at the time. On July 4, 1900, the museum’s first paleontologist Elmer Riggs and his assistant H.W. Menke came upon a set of enormous bones in western Colorado. Riggs—who was specifically hired two years earlier to find dinosaurs for the nascent museum—named the new dinosaur Brachiosaurus altithorax in 1903. The individual bones were set in display cabinets (left image, below) around the same time. Comprising about 25% of the skeleton, Riggs did not consider the find complete enough to assemble into a standing mount. Nevertheless, the museum commissioned a replica Brachiosaurus skeleton about 90 years later, basing the missing pieces on the related Giraffatitan.

New Brachiosaurus fossils have proven elusive. While several individual bones have been found, the holotype collected by Riggs and Menke remains the most complete example of this famous dinosaur.

Apatosaurus” sp. (P 25112 and P 27021)

The Field Museum’s “Apatosaurus” is a composite of two sauropod specimens, collected 40 years apart. Photos © Field Museum.

Riggs and Menke found another sauropod in western Colorado in 1900, and returned the following year to excavate it. This time, they had the back two-thirds of an apatosaurine sauropod, complete save for the distal portions of the limbs and tail. As museum leaders were unwilling to fund a search for more sauropod material, Riggs mounted the partial skeleton in 1908 (left image, above). 

The sauropod remained in this unfinished state until the 1950s, when preparator Orville Gilpin arranged to acquire another incomplete sauropod. Gilpin had excavated the specimen with Jim Quinn near Moab, Utah in 1941, and knew that it was a perfect complement to the skeleton on display. Long-time museum president Stanley Field (nephew of founder Marshall Field) had repeatedly resisted requests from the paleontology staff to complete the mount, but allegedly relented after overhearing a visitor ask which side of the half-dinosaur was the front. Gilpin built an armature for the neck and shoulders of the newly acquired specimen (right image, above), and finished the mount with casts of Apatosaurus forelimbs and a Camarasaurus skull from the Carnegie Museum of Natural History. The Field Museum finally had a complete sauropod on display, which was unveiled at the April 1958 Members’ Night. 

Apatosaurus” as it is currently displayed in Evolving Planet. Photo by the author.

In 1992, the composite sauropod was dismantled and relocated to the new Life Over Time exhibition on the other side of the building. The museum hired Prehistoric Animal Structures, Inc.—a now-shuttered company specializing in mounting fossil skeletons—to do the work. The updated sauropod debuted in 1994, now posed as though looking at visitors on a nearby elevated walkway. The sauropod remained in place when Life Over Time became Evolving Planet in 2006, though with the walkway gone it now appears to be admiring the Charles Knight murals on the wall.

A note on nomenclature: Riggs identified this skeleton as Apatosaurus, but the label was changed to Brontosaurus in the mid-20th century, when Apatosaurus fell out of common parlance. The name Apatosaurus returned to labels in 1994. However the most recent word on this specimen—from Tschopp et. al 2015—is that it’s not Apatosaurus nor Brontosaurus, but likely another, yet unnamed taxon.

Triceratops horridus (P 12003)

The skull of FMNH P 12003 as it is currently displayed in the SUE gallery. Photo by the author.

In 1904, Riggs moved on from the Jurassic-aged rocks of Colorado to the Cretaceous of Carter County, Montana. Today, this part of southeast Montana is lousy with paleontologists. There’s even an annual shindig for field crews held at the Carter County Museum in Ekalaka. However, Riggs’ expedition was among the first to visit the region from a large museum. The most significant find of the summer was a Triceratops skull and partial skeleton from just west of the Chalk Buttes.

The skull was prepared by 1905 and has been in every iteration of the Field Museum’s paleontology halls. The unusually thick brow horns were recently confirmed to be real bone, but it’s possible that they were originally from another, larger specimen (edit: There is real bone inside the horns, but they are padded with a lot of plaster reconstruction—see comments). The remainder of the skeleton remains in storage.

Gorgosaurus libratus (PR 2211)

Elmer the Gorgosaurus as it was last displayed, in 2017’s Specimens: Unlocking the Secrets of Life. Photo by the author.

Most collecting was paused during World War I, but shortly after the war, Marshall Field III funded new expeditions in all four of the Field Museum’s major research areas (Zoology, Botany, Geology, and Anthropology). Riggs led three of these expeditions, one to Alberta and two to Argentina and Bolivia. Riggs saw the 1922 Alberta trip as something of a practice run, since he hadn’t been in the field in years, and some on his team had never done fieldwork at all. 

Still, the crew was serious about bringing in fossils. Riggs decided to go to the Red Deer River region of Alberta, a place where his former colleague and classmate Barnum Brown had unearthed numerous near-complete dinosaurs for the American Museum of Natural History. Riggs also hired fossil hunter George F. Sternberg, who already knew the area well, to join him on the 14-week expedition.

After returning from Alberta, Riggs was busy getting ready for the upcoming expeditions to South America, and most of the field jackets remained unopened for years, or even decades. One jacket lingered until 1999, when the large team of preparators assembled to prep SUE the T. rex decided to crack it open. 

Inside, they found the virtually complete hips, hindlimbs, and tail of a four-year-old Gorgosaurus, which they named Elmer. Riggs’ notes indicated that the skull ought to have been present, but the preparators only found a few teeth. Further investigation revealed that the partial skull had been in its own jacket with a different number, and that it had been loaned to the University of California at Berkeley in the 1970s. The Berkeley scientists had subsequently lost the fossil, but (fortunately) made a cast of it, which was later returned to the Field Museum. 

Elmer was included in the touring exhibition Dinosaurs: Ancient Fossils, New Discoveries, and most recently in 2017’s Specimens: Unlocking the Secrets of Life. It is currently off exhibit.

Lambeosaurus lambei (PR 380)

Lambeosaurus under prep in 1955. Photo © Field Museum.

According to Riggs, the “prize find” of the 1922 Alberta expedition was a Lambeosaurus found by Sternberg. Even in the field, it was clear that the skeleton was completely intact, save for the head, part of the neck, and the tip of the tail. Sternberg’s field notes indicate that the weathered side included a number of large skin impressions. The Lambeosaurus was jacketed and excavated in eight sections, totaling about three tons of rock and fossil.

Like Elmer the Gorgosaurus, the Lambeosaurus was left unprepared while Field Museum preparators focused on the fossils from South America. In 1947, the University of Chicago closed its geology museum and donated its collections to the Field Museum, pushing the Alberta fossils even further down the queue. Stanley Kuczek finally prepared the Lambeosaurus in 1954, when it was slated to be paired with Daspletosaurus in a new display (more below).

Kuczek prepared only the unweathered (face-down in the field) side of the skeleton, so the skin impressions Sternberg reported are still embedded in the matrix under the fossil. A Lambeosaurus skull from the University of Chicago collection (UC 1479) was used to complete the display. Sternberg’s Lambeosaurus remains the most complete non-bird dinosaur at the Field Museum, and a (perhaps unsung) highlight of the collection.

Daspletosaurus torosus (PR 308)

Nathan Cochran recently rediscovered the original “Gorgosaurus” and Lambeosaurus label, as seen in this image. Check it out here. Photo © Field Museum.

The Field Museum’s Daspletosaurus, sometimes called “Gorgeous George,” was collected by Barnum Brown of the American Museum of Natural History in 1914. It came from the same region of Alberta that Riggs and company would visit eight years later. At the time, the partial skeleton was considered an example of Gorgosaurus, of which the New York museum already had three. In 1955, Field Museum board member Louis Ware offered to buy the American Museum’s spare tyrannosaur, and soon the fossil was on its way to Chicago.

Orville Gilpin mounted the skeleton—which has been known as Daspletosaurus since 1999—for display. He elected to create a completely free-standing mount, with no visible armature. This required drilling through each of the vertebrae to thread a steel pipe through, as well as splitting the right femur. These destructive practices would never be undertaken today, but in the mid 20th century, dinosaurs were seen as display pieces first and scientific specimens second.

Daspletosaurus in Evolving Planet. Photo by the author.

Like the “Apatosaurus,” Gorgeous George was revealed to the public during Members’ Night. The skeleton was placed at the south end of the museum’s central Stanley Field Hall, standing over Sternberg’s Lambeosaurus as though it had just brought down the herbivore. In 1992, Prehistoric Animal Structures, Inc. remounted the Daspletosaurus in a more accurate horizontal posture, once again poised over its Lambeosaurus prey. The real skull has never been mounted on the skeleton, but it is currently on display near the museum’s east entrance.

Parasaurolophus cyrtocristatus (P 27393)

Parasaurolophus in Evolving Planet. Photo by the author.

The Parasaurolophus cyrtocristatus holotype was found by Charles Sternberg (father of George) in 1923, near Fruitland, New Mexico. It made it to the Field Museum through a series of exchanges, but was not prepared until the 1950s. John Ostrom published a description of the skeleton and partial skull in 1961, noting that it was nearly identical to Parasaurolophus walkeri from Alberta, except for the crest on the back of its head. While P. walkeri has a long, backward-projecting crest, the New Mexico species has a short crest that curves downward.

The Parasaurolophus was first exhibited in 1994, as part of Life Over Time. The 70% complete skeleton was mounted directly to a wall, with illustrations of the missing bones behind it. Ten years later, Research Casting International was brought in to turn the Parasaurolophus into a complete standing mount. Like most modern mounts, the armature is designed so that each bone can be removed individually for study or conservation. Captured in a graceful walking pose, the Parasaurolophus is—in my opinion—the most elegant and evocative dinosaur mount at the Field Museum.

References

Brinkman, P. 2000. Establishing vertebrate paleontology at Chicago’s Field Columbian Museum, 1893–1898. Archives of Natural History 27:81–114.

Brinkman, P. 2010. The Second Jurassic Dinosaur Rush: Museums and Paleontology in America at the Turn of the 20th Century. Chicago: University of Chicago Press.

Brinkman, P. 2013. Red Deer River shakedown: a history of the Captain Marshall Field paleontological expedition to Alberta, 1922, and its aftermath. Earth Sciences History 32:2:204-234. 

Erickson, G.M, Makovicky, P.J., Currie, P.J., Norell, M.A., Yerby, S.A., and Brochu, C.A. 2004. Gigantism and life history parameters of tyrannosaurid dinosaurs. Nature 430:722–775.

Forster, C.A. 1996. Species resolution in Triceratops: cladistic and morphometric approaches. Journal of Vertebrate Paleontology 16:2:259–270.

Gilpin, O. 1959. A free-standing mount of Gorgosaurus. Curator: The Museum Journal 2:2:162–168.

Ostrom, J.H. 1961. A new species of hadrosaurian dinosaur from the Cretaceous of New Mexico. Journal of Paleontology 35:3:575–577.

11 Comments

Filed under dinosaurs, exhibits, field work, FMNH, fossil mounts, history of science, museums, ornithopods, sauropods, theropods

Ernestine lives!

A scaffold of foreboding surrounds the Brachiosaurus cast. Photo by the author.

Earlier this year, the Brachiosaurus cast skeleton that stood on the Field Museum’s northwest terrace was retired. On display for 23 years (and 23 brutal Chicago winters), the replica was suffering from a rusting armature and extensive cracking. Deemed structurally unsound, it was dismantled the week of June 12. Though we lament the loss of the long-necked sentinel over DuSable Lake Shore Drive, the legacy of Brachiosaurus—the Field Museum’s first dinosaur—lives on.

The story of Brachiosaurus begins with the museum’s founding, nearly 130 years ago. The Field Columbian Museum opened in Chicago on June 2, 1894 as a permanent home for the collection assembled at the previous year’s World Columbian Exposition. While the collection boasted thousands of zoological, botanical, anthropological, and geological objects, it had but a single dinosaur: a replica skeleton of Hadrosaurus. Based on the original at the Philadelphia Academy of Natural Sciences, the model was badly out of date by the 1890s. Oliver Farrington, the Field’s original geology curator, considered it an embarrassment and petitioned director Frederick Skiff to hire a vertebrate paleontology specialist to collect better material. Skiff passed the request on the board, but was denied—with a building full of uncataloged specimens, they saw no need to obtain anything new.

The board changed their minds in 1898, when the Carnegie Museum and American Museum of Natural History announced plans to find sauropod dinosaurs for display. The resume of Elmer Riggs, a recent University of Kansas graduate with ample fossil hunting experience, happened to be on Skiff’s desk, and so Riggs was hired to collect dinosaurs for the museum.

The Brachiosaurus site in summer 1900. This excavation was particularly well-documented, thanks to Menke’s long-exposure, plate glass photographs. Photo © Field Museum, CC BY-NC.

In 1900, Riggs was prospecting near Grand Junction, Colorado with assistant Harold William Menke and camp cook Victor Dames. Their quarry was an exhibit-worthy specimen of Brontosaurus, the largest known dinosaur at that time. On July 4, Menke made a promising find: a giant limb bone that was the right size to be a Brontosaurus femur. The group began excavating and eventually revealed additional limb bones, nine-foot ribs, an articulated series of dorsal vertebrae, the sacrum, and a scattering of other bones. The course-grained, pebbly matrix suggested burial in a fast-moving river, which probably swept away the missing parts. All told, they had about 25% of a skeleton—not enough to mount for display but still worth collecting.

Once the fossils were back at the museum and undergoing preparation, Riggs confirmed something he had probably suspected in the field. Menke’s six-foot, seven-inch limb bone wasn’t a femur, it was a humerus. The humerus of Brontosaurus was well under five feet, so this animal was substantially larger. With his 1903 publication introducing Brachiosaurus altithorax to the world, Riggs emphasized its record size—and encouraged the press to make a meal of it.

Brachiosaurus was a win for the Field Museum: the first newly described dinosaur to come out of the nascent institution was also the biggest ever (a title Brachiosaurus would hold for the better part of the century). But while many of the individual bones were put on display in 1908, the holotype wasn’t complete enough to assemble into a standing mount. Instead, another find from Riggs’ 1900 Colorado expedition—the Fruita Apatosaurus—became the museum’s first mounted sauropod.

When the Field Museum was exploring the idea to create a complete replica Brachiosaurus, an unknown staffer (“M”) drew up this illustration to show how much would need to be reconstructed. This image is stitched together from multiple scans.

It would be almost ninety years before the museum revisited the prospect of putting Brachiosaurus on display. In the early 1990s, the Exhibitions department was hard at work remaking its paleontology halls from the ground up. This project would eventually open as Life Over Time in 1994, but in the meantime it was agreed that a showstopping symbol was needed outside the exhibit proper.

That showstopper could only be Brachiosaurus. The Field Museum hired Prehistoric Animal Structures, Inc.—a now-shuttered company specializing in mounted fossil skeletons—to make it happen. Commonly abbreviated as PAST, the company was founded by Gilles Danis, who previously created many of the Royal Tyrell Museum’s opening day exhibitions.

Fortunately for Danis and his team, there was more Brachiosaurus (and Brachiosaurus adjacent) fossil material to work with then in Riggs’ day. A handful of specimens referred to Brachiosaurus altithorax (mostly individual bones) had since turned up in the western United States, but the bulk of information came from a pair of Tanzanian skeletons. In 1914, German paleontologist Warner Janensch determined that these specimens were a second species of BrachiosaurusBrachiosaurus brancai. More recently, the Tanzanian brachiosaur has been moved to its own genus, and is now known as Giraffatitan brancai. While there are a number of key differences, Giraffatitan and Brachiosaurus are one another’s closest known relatives, making the former a reasonable reference for the unknown parts of the latter.

Ernestine the Brachiosaurus in Stanley Field Hall. Photo © Field Museum.

To reconstruct Brachiosaurus for the Field Museum, the PAST crew started by taking molds of the Brachiosaurus holotype bones. Next, Danis and Donna Sloan traveled to the Museum für Naturkunde in Berlin, where the Giraffatitan fossils are housed. While they were not allowed to make casts, Danis and Sloan took extensive measurements. Stephen Godfrey used this information to sculpt the missing parts of Brachiosaurus, including the head, neck, tail, and feet.

A few adjustments were made along the way. First, the PAST crew inflated the limb bones slightly, so that the steel armature would fit inside. Second, the museum wanted visitors to be able to walk under the Brachiosaurus, but its torso wasn’t quite long enough to meet the minimum fire egress requirements. PAST solved the problem by quietly duplicating two of the vertebrae in the dorsal series. In an amusing twist, these stretch-limo proportions may have inadvertently been correct. Danis named the finished replica Ernestine, because “Ernestine is an awkward name and Brachiosaurus is an awkward-looking thing.”

Ernestine the Brachiosaurus has stood in the United terminal at O’Hare since 1999. Photo by the author.

On June 29, 1993 (a Tuesday), Danis, three PAST crew members, and six Field Museum staffers assembled Ernestine in the museum’s central Stanley Field Hall. Reporters from the Chicago Sun-Times and Tribune were present to document the construction (scans of these articles are at the end of this post). Seven hours later, Brachiosaurus was complete, on its feet for the first time in 152 million years. At 41 feet tall, the replica skeleton was tall enough to peer over the second floor mezzanine and into the entrance to Life Over Time.

By coincidence, Ernestine’s debut was less than three weeks after the release of Jurassic Park—which happened to feature a Brachiosaurus in an iconic opening scene. The film quickly became the highest-grossing of all time, and launched a global wave of dino-mania. While he was busy finishing up and installing the Brachiosaurus, Danis was fielding calls left and right for his services. Even hotels were inquiring about putting dinosaur skeletons in their parking lots. His response? “If they can put up the cash for them, we’ll put them up!”

The outdoor Brachiosaurus on a rare sunny day. Photo by the author.

Ernestine’s stint in Stanley Field Hall wound up being short-lived. The Field Museum acquired SUE the Tyrannosaurus in 1997, and the mounted skeleton took the sauropod’s place in May 2000. Ernestine was relocated to O’Hare International Airport, where it remains today. Meanwhile, the museum commissioned a second Brachiosaurus replica to be displayed outdoors. Made from durable, all-weather plastic resin, the outdoor Brachiosaurus stood on the northwest terrace for the next 23 years. Notably, it outlasted SUE’s time in Stanley Field Hall: the Tyrannosaurus was relocated to its own gallery in 2018, and a cast of the Argentinian sauropod Patagotitan now occupies the Field Museum’s central space.

The Brachiosaurus display in the Field Museum’s Science Hub includes parts of the holotype, a replica skull, and more. Photo by the author.

Now that the outdoor Brachiosaurus replica has been retired, it’s fair to ask what’s next for the Field Museum’s first dinosaur. Ernestine will remain at the airport for the foreseeable future, but plans for the northwest terrace have not yet solidified. In the meantime, a popup exhibit rhapsodizing Brachiosaurus recently opened in the Science Hub—a rotating exhibit space where interpreters are always present. I was happy to write the labels for this display, which tells the story of Brachiosaurus from its discovery to the removal of the outdoor skeleton (in far fewer words than this post). The exhibit includes the sculpted skull of the outdoor Brachiosaurus and parts of the holotype—including the tail vertebrae, which haven’t been on public view since the 1920s. Be sure to stop by if you’re in the area, but be quick: Science Hub exhibits typically last only six months or so.

References

Brinkman, P.D. 2010. The Second Jurassic Dinosaur Rush: Museums and Paleontology in America at the Turn of the Twentieth Century. University of Chicago Press: Chicago, IL.

Engh, B. 2020. We Found a Brachiosaurus.

Riggs, E.S. 1903. Brachiosaurus: The Largest Known Dinosaur. American Journal of Science 4:15:299-306.

Simpson, W. 2022. Pers. comm.

Taylor, M.P. 2009. A re-evaluation of Brachiosaurus altithorax Riggs 1903 (Dinosauria, Sauropoda) and its generic separation from Giraffatitan brancai (Janesch 1914). Journal of Vertebrate Paleontology 29:3:787-806.

Taylor, M.P. 2014. Giles Danis of PAST on the Chicago Brachiosaurus mount.

Leave a comment

Filed under dinosaurs, exhibits, field work, FMNH, fossil mounts, history of science, movies, museums, reptiles, sauropods

Spinosaurus, aquatic animals, and jargon

Two weeks ago, another volley was fired in the ongoing Spinosaurus wars. Long known only from remains that were destroyed during World War II, this North African dinosaur has been the subject of numerous scientific publications over the last decade thanks to a newly discovered partial skeleton, which was first described in 2014. With its long, narrow snout, daschund-like hind limbs, and a six-foot ornamental sail on its back, Spinosaurus was an extreme and unusual dinosaur, and it’s easy to see why it’s of such interest to paleontologists, laypeople, and children alike. 

Reconstructed Spinosaurus skeleton at the Hong Kong Science Center. Photo by Hong Kong Tourism Board

Nevertheless, the profound weirdness of Spinosaurus has also made it contentious. What was this animal doing that necessitated the evolution of such bizarre features? Paleontologists agree that it was a specialized fish-eater, as evidenced by its long snout, straight, conical teeth, and nostrils high up on its head (enabling it to breath while keeping its mouth submerged). But while some authors (e.g. Hone and Holtz 2020) imagine Spinosaurus as a heron-like animal, snatching fish from the shallows while wading or standing on the shore, others (e.g. Ibrahim et al. 2020) see evidence for a creature that was at home in the water, swimming after its prey. Naturally, there is also a full gradient of options between the extremes.

The newest publication, by Paul Sereno and colleagues, ground-truths some details of Spinosaurus anatomy. The authors compared parts like the feet and the tail vertebrae to modern animals, and also employed a digital model of Spinosaurus to virtually test its buoyancy and stability in water. Their primary conclusion: largely due to the tall sail on its back, Spinosaurus would have struggled to swim in deep water. 

This is valuable data that helps refine our understanding of Spinosaurus, specifically by constraining the list of ways it could have obtained its fishy prey. Sereno and colleagues argue that Spinosaurus didn’t dive or pursue fish in open water, but their results don’t preclude the possibility that it spent most of its time around water or even in the water (indeed, there is still ample evidence that it did). 

I hope it’s clear that I have no qualm with the content of the paper itself. Instead, what drove me to start hacking at my keyboard today was the title: “Spinosaurus is not an aquatic dinosaur.” Within the paper, Sereno and colleagues define an “aquatic” animal as one “adapted for life primarily, or solely, in water with severely reduced functional capacity on land.” Bony fish, whales, penguins, and sea turtles are provided as examples. The authors go on to clarify that crocodiles and waterfowl do not meet the criteria for aquatic life. Hippos, sea otters, and pond turtles would also not qualify as aquatic based on this definition. The authors provide the term “semiaquatic” to cover these sorts of animals, and ultimately conclude that Spinosaurus itself was semiaquatic. 

Hippos spend most of their time fully or nearly submerged, but by the definition in Sereno et al. 2022, they are not aquatic. Photo by cloudzilla, CC BY.

I would argue that this use of the word aquatic is counterintuitive to all but the most dedicated specialists, and that its use in the title obfuscates the authors’ own conclusions. The definition of aquatic in common parlance is “of, in, or pertaining to water.” A hippo, for example, would be uncontroversially considered aquatic by most people, since it spends much of its time nearly or fully submerged. Therefore, I find no fault with the legions of people who saw the title and inferred that the authors were arguing that Spinosaurus did not spend time in or near water at all. Some might say that people ought to read the paper before drawing conclusions, but the title should be the first step on that journey. It certainly shouldn’t misrepresent the contents of the paper. This paper could have just as easily been titled “Spinosaurus was a semiaquatic dinosaur” and there would be no confusion. 

I don’t mean to call out this paper specifically, and I certainly don’t think the habits and habitat of Spinosaurus are of crucial public interest. However, I do see this paper’s title as emblematic of a bad habit among specialists, scientific or otherwise. It’s an insistence on using a technical definition for a word or phrase, even if that word or phrase is widely understood to mean something else. 

In a 2011 paper about barriers to public understanding of climate change, Somerville and Hassol provided a list of terms that have scientific meanings that are distinct from their popular meanings (below). Later, a crowd-sourced spreadsheet expanded the list. A case in point: for biologists, a mutation refers to any change in a gene. But for most English speakers, a mutation is inherently negative, and can have deadly consequences (or makes things really big really fast). A correct context for mutation is critical to understanding what evolution is, and how it works.

Table of frequently misunderstood scientific terms from Somerville and Hassol 2011.

In a particularly consequential example, the World Health Organization and other authorities avoided calling the COVID-19 virus “airborne” for well over a year. Why? In part, because they were adhering to a definition of airborne that excludes particles above a certain size, or which haven’t been demonstrated to linger in the air for a certain amount of time. A virus can be in the air, but not be technically airborne. Of course, anyone who isn’t an infectious disease expert would reasonably—but incorrectly—conclude that a virus that is “not airborne”  isn’t transmitted by breathing. Many factors contributed to the failure to contain COVID-19, but the use of counterintuitive jargon in messaging for a wide audience certainly did not help.

There is, I suppose, a certain nobility in declaring that “words have meaning,” and attempting to lead by example in their use. Likewise, there are certain words that have no common alternative, and must be introduced in order to communicate (synapsid and multituberculate come to mind). But new ideas stick better when they are built on existing knowledge—replacing ideas your audience already has is much harder. If you think the science you are communicating is important and worth knowing, why not meet your audience where they already are? Attention spans are short, so we need to use the limited attention we get wisely.

References

Fabbri, M., Navalón, G., Benson, R.B.J., Pol, D., O’Connor, J., Bhullar, B.S., Erickson, G.S., Norell, M.A., Orkney, A., Lamanna, M.C., Zouhri, S., Becker, J., Emke, A., Dal Sasso, C., Maganuco, S., Auditore, M., and Ibrahim, N. 2022. Subaqueous foraging among carnivorous dinosaurs. Nature 603:852–857.

Hone, D.W.E. and Holtz, Jr., T.R. 2021. Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist? Palaeonologica Electronica 24(1):a03.

Ibrahim, N., Maganuco, S., Dal Sasso, C., Fabbri, M., Auditore, M., Bindellini, G., Martill, D.M., Zouhri, S., Mattarelli, D.A., Unwin, D.M., Weimann, J., Bonadonna, D., Amane, A., Jacubczak, J., Joger, U., Lauder, G.V., and Pierce, S.E. Tail-propelled aquatic locomotion in a theropod dinosaur. Nature 581:67–70.

Lewis, D. 2022. Why the WHO took two years to say COVID is airborne. Nature News Feature, April 6, 2022.

Sereno, P.C., Myhrvold, N., Henderson, D.M., Fish, F.E., Vidal, D., Baumgart, S.L., Keillor, T.M., Formoso, K.K., and Conroy, L.L. 2022. Spinosaurus is not an aquatic dinosaur. eLife11:380092.

Somerville, R.C.J. and Hassol, S.J. 2011. Communicating the science of climate change. Physics Today 64:10:48.

2 Comments

Filed under dinosaurs, education, opinion, science communication, theropods

Rhinos too thick: Fossils and flattery at Agate Springs

“No progress at all. Rhinos too thick.”

So wrote American Museum of Natural History fossil collector Albert Thomson in his September 1917 field notes. At that point, Thomson been collecting mammal fossils at Agate Springs nearly every year since 1907—and was still finding rhino bones in such abundance that they formed a seemingly impenetrable layer.

Located in northwest Nebraska and dating to about 22 million years ago, the Agate Springs bone bed is an aggregation of fossilized animals on an astonishing scale. Like the Carnegie quarry at Dinosaur National Monument, it provides a snapshot of an ecosystem at a moment in geologic time. But while a high estimate of the individual dinosaurs represented at Carnegie Quarry is in the hundreds, the main bone bed at Agate Springs may well contain tens of thousands of animals. The vast majority of fossils come from the tapir-sized rhino Menoceras, scrambled and packed together in a layer up to two feet thick. Moropus, Daeodon, and an assortment of other hoofed animals and small carnivores have also been found. These animals may have gathered during a drought and succumbed to thirst or disease, before the returning rains rapidly buried their remains. It’s also possible that the bone bed represents a mass drowning during a flash food. Since different parts of the site vary in density, Agate Springs likely represents multiple mortality events over a number of years.

knightmiocene

Charles Knight’s mural of the Agate Springs ecosystem. © Field Museum, CC BY-NC 4.0

Today, less than 30% of the Agate Springs bone bed has been excavated, but not for a lack of effort. Teams from a half dozen museums visited the site between 1900 and 1925, with the Carnegie Museum of Natural History (CM), the University of Nebraska State Museum (UNSM), and the American Museum of Natural History (AMNH) establishing large-scale excavations and returning year after year. As we shall see, the relationships between these teams were not always amicable, making this period at Agate Springs a window into the preoccupations of museum workers at the turn of the century. Agate Springs also illustrates how east coast paleontologists interacted with and relied on local people, defending their social capital as jealously as any fossil deposit. Finally, museums’ interest in Agate Springs in the mid 20th century exemplifies how exhibitions had evolved during the intervening period.

The setting

Agate Springs is unceded Sioux territory, occupied by settlers after the Kansas-Nebraska Act of 1854. James Cook purchased the treeless tract of rolling hills from his father-in-law in 1887, naming it Agate Springs after the rocky banks of the nearby Niobrara River. James and Kate Cook established a ranch where they raised horses and cattle, and Agate Springs became a popular stop for travelers on their way to Cheyenne, Wyoming.

The Cooks were aware of bones weathering out of the hills as far back as 1885, when the land was still owned by Kate’s father. James knew that scientists were on the lookout for fossils in the region—by one account he worked for O.C. Marsh as a translator in 1874. Once the ranch was established, he began writing to museums, including UNSM in Lincoln and the Carnegie Museum in Pittsburgh, inviting them to visit Agate Springs. A UNSM party led by Erwin Barbour was the first to drop by, spending a night at the Cook homestead in July 1892. Chiefly concerned with collecting “devil’s corkscrews” (ancient beaver burrows) north of the Niobrara, Barbour sent his student F.C. Kenyon to check out the bones Cook promised in the nearby hills. Kenyon collected as much as he could carry, but his report apparently did not excite Barbour, and the UNSM party moved on.

It would be twelve years before another paleontologist visited Agate Springs. Olaf Peterson of the Carnegie Museum stopped by the ranch in early August of 1904, at the end of a tumultuous field season in western Nebraska. Peterson had received a telegram on July 4 that his brother-in-law, boss, and mentor John Bell Hatcher had died of typhoid. Peterson intended to cut the season short, but Carnegie Museum director William Holland denied the request, writing in no uncertain terms that Peterson was to continue his work in Nebraska. Later in July, Peterson fell ill himself, and spent several days recovering in Fort Robinson. Suffice it to say, Peterson was not in the best of moods when he arrived at Agate Springs.

Nevertheless, the outcrops Peterson saw at Agate Springs revitalized his spirit. Accounts differ on what part of the site Cook showed him (this will be important shortly), but when he returned east two weeks later he was raving about a quarry with “ten skulls within a six-foot radius.” In Pittsburgh, Peterson and Holland began drawing up plans for an ambitious excavation the following year. In their view, they had staked a claim to the site: just like contemporary gold and oil prospectors, turn-of-the-century paleontologists lived by the rule of “dibs.” For the museum crowd, being the first scientist to “discover” a quarry meant an entitlement to control the site and the resources it produced. This included both the physical fossils and the privilege to describe and interpret those fossils—controlling the site meant controlling scientific knowledge.

Dueling quarries

Cook either didn’t know about such customs, or didn’t care. To his credit, Cook was never interested in monetizing the fossils at Agate Springs. By all accounts, he simply wanted to share with the world the knowledge that the bone bed represented. He was concerned that it was so expansive that no single team could uncover all its secrets. On May 26, 1905, Cook wrote to Barbour, inviting him to share in the bounty he had shown Peterson the previous summer, explaining that it was “so large that [the Carnegie team] could not work it out in years, so there is plenty of material for other parties to work with.”

On other occasions, Barbour had taken a cautious stance when corresponding with landowners. In this case, however, he could barely contain the enthusiasm in his reply. In a single letter, Barbour reminded Cook that UNSM had visited 12 years before and therefore should have collecting rights, asked Cook to place a literal flag on the site claiming it for the University of Nebraska, offered to hire Cook’s 18 year-old son Harold as a field assistant, and appealed to Cook’s state pride by listing the out-of-state institutions that were removing Nebraska’s fossil heritage each year.

agatehills

Carnegie and University Hills at Agate Springs National Monument. Photo by Neublar110, CC SA

That summer, Peterson and Barbour opened quarries on two neighboring buttes at Agate Springs, which came to be known as Carnegie Hill and University Hill. While the two parties were cordial neighbors, letters exchanged by Holland, Barbour, and Cook demonstrate that the museum directors were uncomfortable with the situation. Holland repeatedly wrote to Cook, claiming that his team was more skilled than Barbour’s and warning that it would be bad for science if the fossils and geological data were split between two institutions. Harold Cook didn’t appreciate Holland’s condescending tone. In a note to his father pinned to one of the letters, he wrote that “a letter of this kind is the work of a pinheaded, egotistical, educated fool.”

The Carnegie and UNSM teams returned to Agate Springs in 1906, but spent the summer of 1907 elsewhere. The elder Cook took the opportunity to invite yet more paleontologists, and teams from AMNH, the Yale Peabody Museum, and Amherst College showed up to collect fossils.

Meanwhile, Holland began a campaign to wrest control of the site by any means necessary. He became particularly focused on the narrative of who discovered the bone bed. According to Holland, Cook had shown Peterson the smaller, less dense site that would be come to be known as Quarry A. Peterson then went prospecting on his own and found the primary bone bed that straddled the two buttes. Holland went on to argue that regardless of who first saw the fossils, Peterson earned credit for the discovery because he was the first trained scientist on the scene, and therefore the first individual to correctly identify the age and identity of the animal remains.

Cook rejected Holland’s retelling of the events of August 1904, insisting that he had known of the bone bed for years before he showed it to Peterson. In many ways, the two men were talking past each other. Cook found Holland’s insistence on claiming the discovery for Peterson nonsensical and disrespectful—he knew his own land, and he was the one who invited the paleontologists in the first place. Holland, on the other hand, was staking a claim among his fellow academics. He needed to demonstrate that the Carnegie Museum had been at Agate Springs first, so that other institutions would yield to his authority to interpret and publish on the fossils.

IMG_9364

Menoceras fossils from Agate Springs on display at the Carnegie Museum of Natural History. Photo by the author.

Late in 1907, Holland visited the Cooks’ ranch in person for the first time. He offered to buy the fossil-bearing land outright, doubtlessly planning to block the other museums from accessing it. At this point, James Cook made the awkward discovery that Carnegie Hill and University Hill were actually just outside his official holdings, in the public domain. Holland moved to purchase the land, but Harold Cook beat him to it, building a cabin and filing a homestead claim in March 1908. In their gentlemanly rancher way, the Cooks told Holland to get lost, and the Carnegie Museum left Agate Springs for good.

Playing nice

While Holland had managed to sour his relationship with a remarkably welcoming and accommodating landowner, Barbour did the opposite. In letters to Cook, he regularly acknowledged the rancher as the discoverer of the site. He visited the Cooks frequently and employed Harold in the UNSM quarry, training the younger Cook into a formidable fossil prospector and anatomist. Soon Harold was studying at the University of Nebraska under Barbour, and a few years later, Harold and Barbour’s daughter Elinor were married. Barbour also named a few species after the Cooks, including Moropus cooki.

AMNH director Henry Osborn and field manager Albert Thomson had a similarly positive relationship with the Cooks. The New York museum took over Carnegie Quarry in 1908, and Osborn visited several times to express his gratitude. Like Barbour, he paid Harold for his time, labor, and expertise. Later, Osborn invited Harold to work at AMNH during the off-season. In return, AMNH was permitted to collect at Agate Springs for nearly two decades. Thomson returned almost every year through 1923, and the museum accumulated so many Menoceras and Moropus fossils that it began selling and trading them to other institutions.

IMG_0328

Menoceras and Moropus slab at the National Museum of Natural History. Photo by the author.

The reward for staying in the Cooks’ good graces was clear. UNSM and AMNH paleontologists gained access to the Agate Spring quarries for many years, accumulating large collections. They earned accolades from publications, public interest from the skeletons they placed on exhibit, and even monetary rewards from selling the excess specimens. Meanwhile, the Carnegie Museum was shut out after their first few seasons of collecting because Holland was, if not outright hostile to the Cooks, unable to communicate effectively with the ranchers. For American paleontologists at the turn of the century, social capital was a critical resource. Positive relationships with landowners and other individuals in the fossil-rich western states earned them access to land, information about the terrain, and networks of eyes on the ground, any of which might lead them to the next important quarry.

You get a rhino block, and you get a rhino block…

The scale and intensity of the Agate Springs excavations decreased after 1910, and in the early 20s, Thompson and the AMNH crew closed up shop, believing they had found examples of every species that could be found. By that time, the site’s value for museums had shifted. Rather than being a bonanza of specimens to collect, categorize, and publish on, Agate Springs had become a place to quickly and easily obtain display-worthy fossils. As Hunt puts it, the site was a “storehouse of good exhibit materials, to be tapped when needed by museums wishing to mount a rhino or two.”

Today, Agate Springs fossils—acquired in the field or via trade—are on display at large and small museums all over North America. Many of these are mounted skeletons of rhinos, camels, and Moropus, but there is also a particular abundance of large, incompletely prepared slabs, which provide viewers with a small window into the Agate Springs bone bed. Because of the sheer density of bones, the early 20th century excavation teams quickly stopped jacketing fossils individually, and instead began preparing out large blocks, typically four to six feet across. The blocks were hardened with shellac, and reinforced with wood planks around their borders. Pulleys and cranes were required to lift the largest blocks out of the quarries. In the early years, the intention was to fully excavate these blocks at their respective museums. It’s not clear which museum first placed a complete block on exhibit, but the idea proved popular. Many later visitors to Agate Springs, from James Gidley of the National Museum of Natural History in 1909 to Elmer Riggs of the Field Museum of Natural History in 1940, came with the express purpose of collecting intact slabs for display.

IMG_0005

Menoceras slab on display at the Field Museum of Natural History. Photo by the author.

The popularity of fossil blocks from Agate Springs coincides with a shift in philosophy toward exhibitions at natural history museums. While early 20th century exhibits were catalogs of life, emphasizing the breadth of the museum’s collection, by the 1920s and 30s many museums had begun moving toward narrative exhibits. Displays were intended to communicate ideas, and objects served as illustrations of those ideas. The fossil blocks from Agate Springs were ready-made illustrations of a number of paleontology concepts, from the process of taphonomy to the task of excavation millions of years later. Most have remained on display to this day, a fact that James Cook would undoubtably be pleased with.

An incomplete list of museums in possession of Agate Springs blocks follows. Do you know of others? Please leave a comment!

  • Carnegie Museum of Natural History
  • American Museum of Natural History
  • University of Nebraska State Museum
  • Field Museum of Natural History
  • National Museum of Natural History
  • Royal Ontario Museum
  • Yale Peabody Museum of Natural History
  • Harvard Museum of Comparative Zoology
  • University of Wyoming Geological Museum
  • South Dakota School of Mines and Technology
  • Wesleyan University Geology Museum
  • University of Austin Texas Memorial Museum
  • University of Michigan Museum of Natural History
  • Science Museum of Minnesota
  • Fort Robinson State Park Trailside Museum

References

Agate Fossil Beds: Official National Park Handbook. Washington, DC: National Park Service.

Hunt, R.M. 1984. The Agate Hills: History of Paleontological Excavations, 1904-1925. 

Vetter, J. 2008. Cowboys, Scientists, and Fossils: The Field Site and Local Collaboration in the American West. Isis 99:2:273-303.

Skinner, M.F., Skinner, S.M., Gooris, R.J. 1977. Stratigraphy and Biostratigraphy of Late Cenozoic Deposits in Central Sioux County, Western Nebraska. Bulletin of the American Museum of Natural History 158:5:265-370.

3 Comments

Filed under AMNH, CMNH, collections, dinosaurs, DMNS, exhibits, field work, fossil mounts, history of science, museums, NMNH, ornithopods, sauropods, theropods, thyreophorans

The dinosaurs of London’s Natural History Museum

Founded in 1881 as an offshoot of the British Museum, the Natural History Museum (NHM) in London is one of the world’s best-known and most-visited museums. For millions of visitors from the UK and abroad each year, NHM provides their first—sometimes only—opportunity to see a full-sized dinosaur skeleton in person. That makes the collection of dinosaurs on display uniquely important: each one is an ambassador to paleontological science and the deep history of the Earth.

For your reference and mine, what follows is a brief introduction to NHM’s dinosaurs. Please note that I have not been to NHM and this information is based on references available online.

Diplodocus carnegii (Dippy)

dip_london_2014

For 36 years, Dippy greeted visitors in Hintze Hall. Source

Most readers are probably familiar with the story of Dippy the Diplodocus. In 1898, industrialist and philanthropist Andrew Carnegie funded an expedition to find a sauropod dinosaur for the newly-founded Carnegie Museum of Natural History. The Diplodocus the team uncovered the following summer was—and still is—one of the most complete sauropod skeletons ever found. Nevertheless, Carnegie lost the race for the first mounted sauropod on permanent display: the American Museum of Natural History unveiled its composite Apatosaurus in March of 1905, while the Carnegie Museum building was still unfinished. Not to be bested by the New York competition, Carnegie offered a complete plaster cast of the Diplodocus to King Edward VII. The replica known today as Dippy went on display in London that May. Carnegie went on to produce seven additional Diplodocus casts, and more have been created since his death in 1919.

Whether we consider all versions or just the London cast, Dippy’s cultural impact is astounding. As Nieuwland writes, “Carnegie’s series of casts—and the political gesture of their donations—turned [Dippy] into a contested and open-ended object that existed at the crossroads of several interacting (social, political, cultural, scientific) domains.” The intersection of political intrigue and gossip with the sensational nature of the specimen itself resulted in a cascade of media attention, political cartoons, and eventually even films. At least in Europe, Dippy can be believably said to be the specimen that made “dinosaur” a household word.

In 1979, Dippy was moved to NHM’s cavernous entryway, called Hintze Hall. The cast served as the museum’s mascot and most iconic object until 2015, when it was replaced with a blue whale skeleton. Dippy’s time in the limelight was not over, however. The original cast was retrofitted for the traveling exhibition Dippy on Tour, and a bronze duplicate may one day be installed outside NHM.

Triceratops sp.

nhmtriceratops

Triceratops replica skeleton at the Natural History Museum. Source

This Triceratops is not an original skeleton or a cast—it’s a papier mâché model. Frederic Lucas of the United States National Museum (now the National Museum of Natural History) created this replica in 1900 for the Smithsonian display at the Pan-American Exhibition in Buffalo, New York. He likely used O.C. Marsh’s published illustration of a Triceratops skeleton as his primary reference. The model made a second appearance at the 1904 Louisiana Purchase Exposition in St. Louis, Missouri, but was rendered obsolete shortly thereafter when Charles Gilmore finished the world’s first real Triceratops mount in 1905. While constructing the skeleton, Gilmore learned that Marsh and Lucas’s straight-legged interpretation was physically impossible—Triceratops actually had partially sprawling forelimbs.

Nevertheless, exhibit models like this rarely go waste. Two years later, NHM received Lucas’s model as a gift from USNM. It has been on nearly continuous display ever since.

Iguanodon bernissartensis

Iguanodon_bernissartensis

The Belgian Iguanodon cast as it appears today.Source

In 1878, coal miners in western Belgium discovered a clay deposit dense with Iguanodon fossils. A crew from the Belgian Royal Museum of Natural History (now the Belgium Museum of Natural Sciences) excavated dozens of skeletons, and in 1882 Louis De Pauw and Louis Dollo took on the task of assembling the best examples into standing mounts. De Pauw distributed casts of the largest and most complete individual to several institutions around Europe, including NHM (sources differ on whether the NHM cast arrived in 1895 or 1905).

While Dippy is made up of individual plaster casts of each bone, the Iguanodon was molded and cast in a handful of large sections. This means that the skeleton cannot be easily reassembled into a horizontal pose, and must remain a relic of an earlier era in our understanding of dinosaur posture.

Hypsilophodon foxii

hypsybeforeafter

Nearly all known Hypsilophodon fossils come from the”Hypsilophodon bed,” part of the Wessex Formation on the Isle of Wight. More than a hundred articulated skeletons have been found in this mudstone layer, including NHM’s mounted pair. These particular individuals were collected by Reginald Hooley, an avocational fossil collector who also described and published several new species. The bulk of Hooley’s collection was sold to NHM in 1924, shortly after his death.

The larger Hypsilophodon (R5829) was mounted in 1934 by preparators Louis Parsons and Frank Barlow, in an upright, tail-dragging pose that closely mirrored the Belgian Iguanodon. This mount remained on display until the early 1990s, when the specimen was remounted for the 1992 dinosaur hall. Nigel Larkin and colleagues adapted the original iron armature to give the skeleton its correct horizontal posture. A juvenile Hypsilophodon (R5830) from the Hooley collection was also mounted at this time, using a cast Orodromeus skull provided by the Museum of the Rockies. Both Hypsilophodon mounts remained on display until 2016, when they were removed due to conservation concerns.

Mantellisaurus atherfieldensis

mantellibeforeafter

The centerpiece of the 1924 Hooley acquisition is the holotype skeleton (R5764) of Mantellisaurus atherfieldensis, known at the time as Iguanodon atherfieldensis. Hooley found the 85% complete skeleton in 1914 on the Isle of Wight, in several blocks that had already eroded out of a cliff. It was—and still is—the most complete dinosaur skeleton found in the UK. Like the Hypsilophodon, the Mantellisaurus was originally mounted in the 1930s with a kangaroo-like posture. It was remounted for the 1992 exhibit in a horizontal walking pose.

More recently, the Mantellisaurus was moved to the redesigned Hintze Hall, part of a small selection of iconic specimens that represent the NHM’s collections and research areas. As an exceptionally complete, local dinosaur, it was a natural choice to represent vertebrate paleontology at the museum. In 2019, paleontologist Susannah Maidment and preparator Mark Graham spent four days temporarily dismantling the Mantellisaurus mount and digitizing every bone for future research.

Scolosaurus cutleri

Scolosaurus

The complete Scolosaurus fossil. Image courtesy of the National History Museum, CC BY.

Another remarkable real specimen in the NHM collection is the Scolosaurus holotype (R5161). This fossil includes nearly the entire animal intact and in situ, including its osteoderms and some skin impressions. Only the head, the end of the tail, and two limbs are missing.

The Scolosaurus was found by fossil hunter William Cutler in 1914. After moving to Alberta from the UK, Cutler found work on Barnum Brown’s field expeditions before setting out as an independent collector. Cutler had a reputation for reckless behavior in the field, and often worked alone. Excavating the Scolosaurus was a case in point: it collapsed on him while he was undercutting the jacket.

NHM purchased the Scolosaurus in 1915, and Parsons set to work preparing the fossil straightaway. It has been on near-continuous display since 1929.

Cutler was hired by NHM again in 1925 to search for dinosaurs in Tanzania. Among his party was none other than Louis Leakey, on his first field season. Tragically, Cutler contracted malaria and died in the field at age 47.

Massospondylus carinatus

massospondylus

Like most of the dinosaurs in the 1992 exhibit, Massospondylus stands on a platform over visitors’ heads. Source

In 1962, NHM acquired a nearly complete, unarticulated Massospondylus cast from the South African Museum in Cape Town. Some time later, William Lindsay and colleagues mounted it for a temporary exhibition at the City of Plymouth Museum. The mount has an unusual supporting armature, composed of short, glass-reinforced epoxy tubes. Since each section of tube fits tightly into the next, the mount can be assembled without the use of adhesives. The Massospondylus was repurposed for the 1992 dinosaur hall, where it remains today.

Gallimimus bullatus

nhm27

At 18 feet long, Gallimimus is bigger than you think. Source

Like Massospondylus, this Gallimimus arrived at NHM as an unarticulated cast in an exchange with a peer institution, in this case the Polish Academy of Sciences. The original skeleton was discovered on a Polish-Mongolian joint expedition led by trailblazing paleontologist and all-around incredible person Zofia Kielan-Jaworowska.

When NHM was beginning work on the 1992 dinosaur hall, the fossil prep team elected to hire Research Casting International to mount the Gallimimus. Rather than using the plaster casts, RCI made a plastic duplicate of each bone and assembled them on an aluminum armature. The skeleton’s running pose meant that the mount’s weight had to be carefully managed. All the weight rests on the left leg, which was molded around a 22-pound steel rod to compensate.

Lindsay reports that the decision to display most of the dinosaurs on elevated platforms was not made until after most of the mounts were finished. This wasn’t an issue for the smaller, more stable skeletons, but the Gallimimus was heavy and awkward enough that the tensioned steel cables holding up its platform had to be adjusted and readjusted as the skeleton was assembled.

Baryonyx walkerii

baryonyx_nhm

A relief-mounted cast of Baryonyx, created in-house at NHM. Source

In January of 1983, William Walker discovered a large claw in a brick pit. NHM paleontologists Angela Milner and Alan Charig traveled to the site in southern England that summer to look for more. What they found was a carnivorous dinosaur unlike any other, with a crocodilian snout and smooth, straight teeth for snagging fish. Named Baryonyx walkeri, this specimen (R9951) is the only confirmed example of the species yet found.

The Baryonyx was found in particularly hard matrix loaded with iron ore, and as a result took nearly ten years to prepare, mold, and cast. A relief mount was completed just in time for the opening of the 1992 dinosaur hall.

Stegosaurus stenops (Sophie)

Sophie the Stegosaurus greets visitors in Earth Hall, at the museum’s east entrance.
Source

NHM’s most recent major dinosaur acquisition is a juvenile Stegosaurus called Sophie (R36730). Commericial fossil hunter Bob Simon collected the skeleton at a quarry in Wyoming, in 2003. The 90% complete, three-dimensionally preserved skeleton was prepared at Sauriermuseum in Switzerland. NHM purchased the specimen in 2013 with the help of multiple donors. Working in secret, staff paleontologists Susannah Maidment, Paul Barrett, and Charlotte Brassey thoroughly documented the skeleton with CT and laser scans of every bone. Sophie’s mounted skeleton was a surprise reveal in December 2014, alongside a trove of open access research covering the animal’s locomotion, bite force, and more.

References

Barrett, P., Parry, P., and Chapman, S. 2016. Dippy: The Tale of a Museum Icon. Natural History Museum, London.

Getty, T.A. and Crane, M.D. 1975. A Historical Account of the Palaeontological Collections found by R.W. Hooley (1865 to 1923). Newsletter of the Geological Curators Group. 4 (September 1975) :170-179.

Lindsay, W., Larkin, N., and Smith, N. 1996. Displaying Dinosaurs at the Natural History Museum, London. Curator 39:4:262-279.

Maidenment, S.C.R., Brassey, C., and Barrett, P.M. 2015. The postcranial skeleton of an exceptionally complete individual of the plated dinosaur Stegosaurus stenops from the Upper Jurassic Morrison Formation of Wyoming, USA. PLoS One. 10:10: e0138352.

Nieuwland, I. 2019. American Dinosaur Abroad: A Cultural History of Carnegie’s Plaster Diplodocus. University of Pittsburgh Press.

Noe, L. and Flinney, S. 2008. Dismantling, painting, and re-erecting of a historical cast of dinosaur Iguanodon in the Sedgwick Museum, Cambridge. NatSCA News 14:41-48.

Swinton, W.E. 1936. Notes on the Osteology of Hypsilophodon, and on the family Hypsilophodontidae. Proceedings of the Zoological Society of London. 106:2:555-578.

Tanke, D.H. 2003. Lost in plain sight: Rediscovery of William Cutler’s missing Eoceratops. In New Perspectives on Horned Dinosaurs. Indiana University Press.

10 Comments

Filed under dinosaurs, exhibits, field work, fossil mounts, marginocephalians, museums, NHM, ornithopods, sauropods, theropods, thyreophorans

Visitor well-being and NHM’s dinosaur exhibit

Dinosaurs at the London Natural History Museum, ca. 1970. Image courtesy of the Trustees of the Natural History Museum, London.

The photo to the left shows the dinosaur exhibition at the London Natural History Museum (NHM) around 1970. It was, by all appearances, a classic dinosaur exhibit, with several large skeletons (Diplodocus, Triceratops, Tyrannosaurus, and Iguanodon, just out of view) arranged in a fairly open gallery. It was replaced in the mid-1990s by a very different dinosaur exhibit, which remains on display today with some minor modifications. The 1990s exhibit (I hesitate to call it “new” since it is nearly 30 years old) differs from the midcentury version in nearly every way. It’s vibrant, colorful, and sometimes cheesy, with cartoons and animatronic dinosaurs intermixed with the traditional skeletons and fossil specimens.

I’m fascinated by the juxtaposition between these two exhibits not only because they are quite different, but because they are different in a way that defies conventional wisdom about how museums have changed in the last half-century.

Before I continue, let me emphasize that I’ve never been to NHM (or to the UK, for that matter). My knowledge of these exhibits comes from photos and anecdotes, as well as this excellent walkthrough video (dinosaur hall starts at 52:25). These are no substitute for exploring an exhibit in person, so my critiques here may be completely unwarranted—please comment if so! In fact, my criticism is about a particular era of exhibit development, not any particular group of people. I’ll add that NHM’s newer paleontology efforts, including the traveling Dippy exhibit, are very impressive.

A representative view of the NHM dinosaur gallery today.

One often hears that natural history museums of the past were stodgy, but reliably educational and authentic. Traditional museum exhibits stuck close to their cabinet of curiosity roots, showcasing the breadth of their collections without excessive pomp. But sometime in the late 20th century, the story goes, museums became overly focused on “edutainment.” Collections-based exhibits were sidelined in favor of theme park-inspired, attention-grabbing gimmicks. The NHM dinosaur exhibit would easily fit into this narrative: the grand hall of skeletons wasn’t flashy enough for modern audiences, so it was replaced by an exhibit full of cheeky pop culture references and roaring animatronics.

I don’t much like this narrative for several reasons, not least of all because attention-grabbing gimmicks have been a part of museums’ DNA since their inception. In the case of the NHM dinosaur exhibits, I suspect the conventional narrative is completely backward: the creators of the 1990s exhibit had educational goals front-of-mind, but the midcentury exhibit was probably more appealing to the museum’s audience.

The animatronic Tyrannosaurus, widely regarded the exhibit’s highlight. Photo by Øyvind Holmstad, CC SA.

Judging by online reviews and the comments I received when I previewed the photos in this post on Twitter, a plurality of actual, flesh-and-blood visitors find the current NHM dinosaur exhibit disappointing. It’s dark and cramped—so much so that the single path through the exhibit essentially becomes a queue on crowded days. The real and replicated specimens on display are underwhelming compared to peer institutions. And the dinosaur skeletons—all casts of medium-sized taxa—are mounted on overhead scaffolding and are hard to see (there used to be a walkway for viewing these at eye level, but it’s been closed for years).

What I find striking looking at photos and videos is how the exhibit’s design doesn’t emphasize the fossils or even the replications, but the graphic panels containing text and images. There are a LOT of panels in this exhibit, and they are the best-lit, most colorful, and most eye-catching part of the experience. I don’t know what the exhibit team was thinking 30 years ago, but I suspect that the way this exhibit turned out is the inevitable result of using learning goals as a primary measure of success.

Brightly-colored panels overshadow the fossils. Photo by Paul Hammond.

Museum leaders continuously struggle for funding and support, and have tried all sorts of metrics to quantify success and prove their institutions’ worth. Attendance, donations, and community reach all have their uses, but don’t capture the qualitative value of a place where people go to learn. Measuring learning is tricky (see standardized tests), but many museums have tried. Typically, this is done by developing an exhibit project around a set of defined learning goals—visitors should leave the exhibit understanding A, B, and C—and using exit surveys to test whether visitors learned what they were supposed to.

The problem with using learning goals to measure success is twofold. For one thing, you may well end up with a product like the NHM dinosaur exhibit. If visitors gaining and retaining specific concepts is your primary concern, it makes sense to focus on presenting ideas via words and graphics. Words are a more direct way to relay information than specimens, so the fossils end up in the dark or even out of visitors’ primary line of sight. And to make absolutely sure visitors are getting the intended message, they’re put on a narrow path that controls what they see and in what order. Unfortunately, reading text and viewing images is something accomplished far more easily (and comfortably) at home than in an exhibit.

The second problem is that learning goals don’t align well with the reasons visitors actually go to museums. James Burns directed me to longtime museum commentator John Falk’s newest book, The Value of Museums, which masterfully articulates this problem. “Virtually all efforts,” Falk argues, “have begun from an ‘insider’ definition of the importance and value of museums and the experiences they create.” From the inside, it makes sense that our institutions are repositories of information, and the purpose of exhibits and other outreach efforts is to share that information with the world. Learning goals follow as a sensible way to measure success. But visitors, by and large, are after something else, which Falk calls “well-being.” They seek out museums as places to activate wonder and excitement, to facilitate understanding about their world, and to provide opportunities to gather and share experiences with friends and family. Learning new information contributes to the well-being provided by museums, but it’s part of a larger set of experiences.

This half-mount Baryonyx cast was a new creation for the 1990s exhibit. Photo by Ripton Scott, CC SA.

With visitor well-being in mind, the choices made in creating the NHM dinosaur exhibit seem misguided. The emphasis is on reading panels, which is generally a solitary activity. Rather than encouraging groups to gather around displays that excite them, the layout necessitates a single-file trudge. With the exception of the animatronic T. rex, few of the objects call attention to themselves (and the coolest and most unique elements, like the Baryonyx and Scolosaurus, are in cramped, dark spaces).

Take a moment to scroll back up to the photo of the dinosaur hall in 1970. There is undoubtably less information in that exhibit, and learning outcomes may well be all over the place. But those four giant skeletons in that open, sun-lit room likely provided a much more memorable experience for the generation of visitors that saw them. And I might go as far as to say that the old exhibit was surely more successful, in the long run, at generating enthusiasm and lasting interest in life on Earth.

References

Falk, J. 2021. The Value of Museums: Enhancing Social Well-Being. Rowman and Littlefield Publishers.

Lindsay, W., Larkin, N., and Smith, N. 1996. Displaying Dinosaurs at the Natural History Museum, London. Curator 39: 4: 262-279.

Rader, K.A. and Cain, V.E.M. 2014. Life on Display: Revolutionizing US Museums of Science and Natural History in the Twentieth Century. University of Chicago Press.

5 Comments

Filed under Uncategorized

Telling SUE’s story (part 2)

DMNS T.Rex

The fleshed-out reconstruction of SUE is the show-stopping highlight of SUE: The T. rex Experience. Photo by Chris Schneider.

Start with Telling SUE’s story (part 1).

Just a few weeks after the new SUE gallery opened at the Field Museum, a smaller team was convened to create a new traveling exhibition about the famous Tyrannosaurus rex. The original traveling exhibit—A T. rex Named SUE—launched in 2000 and ran for more than fifteen years, touring all over North America, Europe, and Asia. But the components were getting worn out, some of the science was lukewarm, and the market for traveling dinosaur exhibits had gotten more competitive. Our task was to build a bigger, better SUE exhibit, using the assets we had just developed for the permanent gallery as a starting point.

Finding an angle

In the permanent SUE gallery, we could rely on the drawing power of the real skeleton of the most complete adult Tyrannosaurus ever found. The traveling exhibit, however, would have to use a cast. That meant we needed to put greater emphasis on storytelling, and as Exhibition Developer, storytelling was my responsibility. To figure out what kind of story we wanted to tell, we started by checking in on our peers. The American Museum of Natural History had just opened the temporary exhibit T. rex: The Ultimate Predator, so the design team and I traveled to New York to have a look.

The visual language of T. rex the Ultimate Predator is stark, angular, and black-and-white. Photo by the author.

T. rex: The Ultimate Predator considers the evolutionary history of Tyrannosaurus rex. The exhibition is about the entire tyrannosaur family and explores how the traits that define T. rex gradually accumulated over a hundred million years. Because this story exists in the realm of cladograms and morphometric analyses, the design language is sparse, almost clinical. The life-sized models, fossils, and illustrations seem to float in a black-and-white void. This visual style pairs well with the story being told, and the team behind T. rex: The Ultimate Predator did some phenomenal work. However, it was clear that we wanted to go in a different direction.

We decided that our exhibit—now titled SUE: The T. rex Experience—would be about the relationship between the titular dinosaur and their environment. The Hell Creek Formation (the rock layer in which SUE was found) preserves one of the most well-studied ecosystems from the Age of Dinosaurs. That meant that we could reconstruct SUE’s life and times in detail, showcasing the world this famous predator lived in and giving visitors a sense of what it was like to be a T. rex

DMNS T.Rex

A narrated light show tells SUE’s story. Photo by Chris Schneider.

The Hell Creek environment was a place of danger and opportunity for SUE, and it was important that our star Tyrannosaurus was never divorced from that context. This environmental focus dovetailed with the story told by the SUE fossil itself. SUE is exquisitely preserved and is the subject of dozens of scientific papers—we know more about this individual than almost any other dinosaur. From how SUE grew up and grew old to how they got injured and sick, SUE’s skeleton tells the life story of the oldest—and therefore the most successful—T. rex known to science. Put another way, we wanted to make SUE a character (to the extent that was scientifically credible, of course). By spotlighting the evidence for SUE’s hard life as an apex predator, we hoped the exhibit would inspire visitors to empathize with this long-dead dinosaur, while discouraging them from conceptualizing T. rex as a fantastical monster.

SUE’s world

SUE: The T. rex Experience immerses visitors in the Hell Creek environment. Scientific advisors Tom Cullen and Az Klymiuk were instrumental in this regard, bringing a focus on the methods used to reconstruct paleoenvironments—including isotopic analysis of microfossils and sedimentology. Not only is this ecological perspective something that visitors specifically asked for during our audience studies, I think it sets our exhibit apart from other paleontology exhibits and media. For example, learning that summertime in Hell Creek brought temperatures of 75 to 85° F and around 80 inches of rain (and how we know) makes the prehistoric past tangible and tactile in a way that the usual dinosaur stats and trivia rarely do. 

A picture is worth a thousand words: this panoramic mural illustrates both the Hell Creek ecosystem and SUE’s place in it. Photo by Chris Schneider.

An exhibit is more than a collection of facts, of course. It’s a story told through physical space, assembled from words, specimens, images, interactives, and media. We leveraged all of these tools to place visitors in the world of Tyrannosaurus rex. Nearly every display is set against a verdant backdrop of Hell Creek swamps and forests (in fact, we made a point of ensuring every image of T. rex is situated in its habitat). Some of these images are pulled from the animated scenes produced for the permanent SUE gallery, but we also commissioned original artwork by Beth Zaiken. It’s easy to get lost in Zaiken’s extraordinary panoramic mural, which vividly captures the waterlogged, angiosperm-dominated forests of the Hell Creek ecosystem. I’m particularly fond of this take on SUE, shown presiding over their kingdom with the relaxed confidence of modern apex predators (lions and alligators have the same energy).

TEX.S10-1

Fossils from SUE’s world are divided into three microhabitats: upland forest, shore of the inland sea, and lowland river (shown here). Photo by Chris Schneider.

The habitat reconstructions are ground-truthed by a variety of Cretaceous fossils, including some never-before-exhibited Field Museum specimens. These include a huge paddlefish, a range of beautiful leaves and fronds, and an articulated Edmontosaurus tail. We rounded out the displays with casts of the most iconic Hell Creek fossils from other museums, such as the AMNH Ankylosaurus and Royal Ontario Museum Acheroraptor. The complete Triceratops skeleton is none other than Hatcher from NMNH. Standing in an imposing, defensive posture, Hatcher ably demonstrates the risks that a top predator like SUE had to face in order to stay fed.

DMNS T.Rex

SUE’s caretaker Bill Simpson had wanted to pair the T. rex with a Triceratops for over 20 years. Photo by Chris Schneider. 

Visitors to SUE: The T. rex Experience won’t just see Hell Creek—they’ll hear, feel, and smell it too. There are ten touchable casts and replications in the exhibit, including a reconstruction of SUE’s skull as it looked when it was first excavated. Meredith Whitfield developed the physical interactives: you can simultaneously hear and feel the infrasonic rumble a T. rex could have produced at a bone conduction platform, and—if you really want to—you can smell SUE’s rancid breath. The scent is actually synthetic rotting flesh, used for training disaster response dogs. I smelled it once, and have no pressing need to do so again!

crushedskull

For us 90s kids, the image of SUE’s smushed, partially-prepared skull is at least as iconic as the mounted skeleton, so I was thrilled we could recreate it for this exhibit. Photo by the author.

As in the permanent SUE gallery, a media overlay ties everything together. Animated scenes of the Cretaceous world are projected on a 20-foot screen, and overhead lights change color in sync with the time of day in the animations. A primordial soundscape of birds, frogs, and insects can be heard throughout the hall. Finally, a light show produced by Latoya Flowers and rigged by Paul Horst takes visitors on a tour of SUE’s skeleton. This narrated presentation highlights SUE’s battle scars, signs of illness, and more. 

SUE in the flesh

Of course, another way to make an exhibit stand out is to build a really big toy. We partnered with the exhibit fabrication maestros at Blue Rhino Studio to realize SUE in the flesh. Blue Rhino had already collaborated with the Field Museum on Mammoths and Mastodons, Antarctic Dinosaurs, and the flock of pterosaurs in Stanley Field Hall, but SUE was a much bigger undertaking.

IMG_9769

The miniature maquette in front of the full-scale model. Photo by the author.

More than a dozen artists took part in building SUE, but I’m told this was primarily Jim Burt’s baby. Burt started the process by sculpting a miniature maquette in clay. The maquette was build directly over a 1/12th scale 3-D print of SUE’s skeleton, ensuring that the proportions were exactly right. At the Field Museum, Tom Cullen and Bill Simpson provided several rounds of anatomical revisions, paying particularly close attention to the arrangement of cornified bumps and knobs on SUE’s face. Of course, it wouldn’t be SUE without also including some of the scars and injuries SUE is famous for. The result is a restoration of not just any T. rex, but a specific old and punch-drunk individual that has lived a tough life but is still thriving.

Jim Burt feeds Deadmonto to SUE. Photo by the author.

Why is SUE eating a young Edmontosaurus? The primary reason is gravity. This model doesn’t have the same weight distribution as a real Tyrannosaurus, and it had to be light enough to break down and travel every few months. We needed a third point of contact with the ground to ensure maximum stability, and the Edmontosaurus prey was the coolest way to accomplish that. By design, it’s initially ambiguous whether SUE killed or scavenged this animal, but a close look at the muddy substrate reveals a set of tracks—Deadmonto’s last steps. What happens next? Imagine SUE horking down the Edmontosaurus whole, not unlike this seagull.

After the maquette was approved, the Blue Rhino team had it scanned, then milled out of giant blocks of foam at full size. It then took about six months to sculpt in the fine details (down to each individual scale) and paint SUE’s burgundy hide. In addition to being an extraordinary artistic creation, this model is a feat of engineering. While it looks seamless, it breaks down into chunks that fit through a standard six-foot door. It’s also light enough that a single person can push it across the floor.

0513802B-3AFA-4B10-B4C5-221EE69AB4F3_1_105_c

The finished model. Photo courtesy of Blue Rhino Studio.

This model must be seen in person to fully appreciate—not just the amount of detail but the sheer size. SUE is absolutely massive, but when you look at the skeleton with gastralia in place and consider the muscles needed to move this beast around, it’s hard to imagine T. rex any other way. 

As I’ve said previously, working with SUE is a humbling experience. It means standing on the shoulders of dozens of researchers, preparators, artists, educators, and more who have contributed to our understanding of this incredible fossil since it was unearthed. I’m delighted to have had the opportunity to join their ranks and help bring SUE to the next generation, and am indebted to my colleagues who willed this latest iteration of SUE into reality. It wasn’t lost on us that SUE: The T. rex Experience debuted 30 years after Sue Hendrikson discovered the fossil—approximately the same amount of time that SUE was alive during their previous existence on Earth. SUE’s second life is now longer than their first, so here’s to the next 30 years.

SUE: The T. rex Experience has been touring since August 2020 and is currently at the Liberty Science Center. Upcoming destinations will be posted on the Field Museum’s traveling exhibitions page.  

4 Comments

Filed under dinosaurs, education, exhibits, FMNH, museums, science communication

Great Whales at the Royal Ontario Museum

IMG_9913

The sperm whale Alulgwet is the first of three skeletons visitors encounter.

This past weekend, I had an opportunity to visit the Royal Ontario Museum, checking another North American natural history museum off my bucket list. There’s plenty to say about the ROM, but I’d like to focus on Great Whales: Up Close and Personal, a temporary exhibition that opened this summer. Great Whales is, in a word, magnificent. It is among the very best natural history exhibits I’ve seen in recent years—no small feat given that much of its development occurred in the midst of the ongoing pandemic.

An exhibit is a story told through physical space, made up of words, objects, images, sounds, and experiences. Great Whales leverages all of these tools to not only immerse visitors in the multi-faceted world of giant whales, but also evoke feelings of awe, reverence, and humility. More than any exhibit or wildlife documentary in recent memory, Great Whales captures the humbling effect of real encounters with the natural world. 

IMG_7952

Displayed at eye level, the scale of this blue whale—80 tons in life—is particularly apparent.

The presence of three real whales is a major part of this. The colossal skeletons of a sperm whale, a blue whale, and a right whale dominate the space, but they are introduced as individuals, rather than specimens. They each have a name and a story: for example, the right whale Alasuwinu was found dead on Epekwitk/Prince Edward Island in 2017. Scientists had tracked this adult male for many years and he had survived a number of close calls with fishing nets, but he ultimately perished after being struck by a boat.  

The ethereal atmosphere of the exhibition is also powerful. The whale skeletons are bathed in a blue glow, casting mesmerizing shadows on the walls and ceilings. Sounds of the ocean—including whale songs—can be heard throughout. In one corner, the whale songs are played at their true volume, which is loud and deep enough to feel in your bones. It’s hard not to imagine sailors from centuries past lying awake at night and hearing those eerie rumbles through the hulls of their ships.

IMG_9951

Visitors can step inside the baleen-laden jaws of this replica skull.

However, I think the exhibition’s biggest strength is that it is told through multiple voices. One of those voices is the standard, omniscient museum voice, through which we learn about the biomechanics of hearts and lungs on a massive scale, as well as the evolution of whales (which could be an exhibit all its own). We also hear from scientists, including ROM mammalogy technician Jacqueline Miller. In one video, Miller recounts the experience of breaking down the blue whale (named Blue), which was found trapped by shifting ice in 2014. She describes the overpowering stench and the overwhelming amount of gore, but also the excitement of turning a tragedy into an opportunity to learn something new and maybe help other whales in the future.

IMG_7949

The evolution section includes skeletons of Pakicetus, Ambulocetus, Kutchicetus, and Dorudon.

Most unique to a science exhibition like this one is the recurring presence of Indigenous Elders, artists, and storytellers. Wolastoq artist and cultural educator Possesom Paul describes whales as ancient partners of humans—powerful, mysterious, but also vulnerable. In two areas of the exhibit, we hear Passamaquoddy Elder Maggie Paul singing the song All My People, which honors the whales. As a non-Native person, I felt privileged that these perspectives were being shared with me. These ways of knowing do not conflict with the scientific ones—instead, they complement one another and provide visitors with more pathways to connect with the exhibition content.

IMG_9962

The remaining North Atlantic right whale population, visualized.

Traditional and scientific perspectives converge in the exhibit’s conservation message. Choice statistics make the plight of whales in the industrialized world particularly stark. I’ve been unable to forget one infographic informing me that 10% of the right whale population has died since 2017—equivalent to losing every person in North and South America. Another graphic illustrates how precious each individual whale is: a wall of polaroid photos introduces us to most of the 300-some right whales alive today. 

Great Whales is poignant, thought-provoking, and often beautiful, representing the best of what a natural history exhibit can be. It will be on display at the ROM until March 2022. It’s unclear if it will travel after that, but I very much hope it does. 

 

5 Comments

Filed under exhibits, mammals, museums, reviews, ROM, science communication

Cross-post: Gorgeous George the Daspletosaurus

Daspletosaurus in Evolving Planet at the Field Museum of Natural History.

I’ve written an article for the Field Museum website about Gorgeous George, the Daspletosaurus that’s been on display since 1956. Take a look if you’d like to learn more about this historic mounted skeleton!

4 Comments

Filed under Uncategorized

Meeting Peale’s Mastodon

humboldt4

A mastodon in an art museum.

Last week, I met a very special fossil. Pictured above is Charles Wilson Peale’s mastodon, which is currently on display at the Smithsonian American Art Museum. Exhumed in 1799 near the banks of the Hudson River and unveiled to the public on Christmas Eve, 1801, this was the very first mounted skeleton of a prehistoric animal ever exhibited in the United States. Preceding Darwin’s On the Origin of Species by six decades, the mastodon entered public discourse at a time when even the idea of extinction was still hotly debated. The mastodon proved to be a source of national pride for European Americans, demonstrating that North America’s natural wonders could rival Europe’s great architecture and rich history.

After Peale’s Philadelphia museum closed in 1848, the mastodon was sold and wound up at the Hessisches Landesmuseum in Darmstadt, Germany. There it remained for over 170 years, largely forgotten in its home country, until SAAM senior curator Eleanor Harvey had the idea to include it in a new exhibition.

969EC399-BD98-460A-8C8D-3DC442AEEEBB_1_105_c

A red curtain evokes Peale’s self portrait, The Artist in his Museum

Harvey’s exhibition isn’t about fossils, or even about Peale. Her subject is Alexander von Humboldt, a 19th-century naturalist who left a profound impact on the scholars, artists, and politicians of the young United States. Alexander von Humboldt and the United States: Art, Nature, and Culture tracks the legacy of Humboldt’s brief but highly influential visit to America. During a six-week tour in 1804, Humboldt met with President Thomas Jefferson and other dignitaries, planting intellectual seeds that would shape America’s aspirational ideals for decades and centuries to come. From his vision of nature as an interconnected network to his advocacy for democracy, the abolition of slavery, and learning from Indigenous knowledge, Humboldt’s influence was wide-reaching*. 

*I personally found the exhibition’s presentation of Humboldt’s influence on US policy a bit doe-eyed. While triumphs like the founding of the National Park Service and Smithsonian Institution can be traced to Humboldt’s legacy, it’s hard to argue that his social ideals had much practical effect in the 19th century

An important stop on Humboldt’s American tour was Peale’s museum in Philadelphia. Humboldt dined with Peale’s family beneath the ribcage of the mounted mastodon, later citing the beast as a key example of America’s incredible natural heritage. For Humboldt, Peale, and Jefferson, the mastodon embodied the young nation’s great potential—if this land was home to creatures as mighty at the mastodon, then its future would have to be equally monumental. 

To Harvey, the mastodon skeleton perfectly encapsulated the story she wanted to tell about Humboldt. She initially thought that shipping the mastodon from Germany for a temporary exhibition was a long shot, but her counterparts at the Landesmuseum were game. Curator Oliver Sandrock oversaw the process of preparing the mastodon for travel, which involved a deep cleaning, as well as breaking down the original 19th century armature into several pieces.

humboldt7

The mastodon is presented primarily as a historical object—there is no discussion of the animal’s life appearance or behavior to be found.

I spoke to Advait Jukar, a Research Associate with the National Museum of Natural History, about his involvement with the mastodon. He inspected the skeleton in early 2020, shortly after it arrived in Washington, DC. As a fossil elephant specialist, Jukar was able to determine that the mastodon was an adult male, and that about 50% of the mount was composed of real, partially mineralized bone. Fascinatingly, most of the reconstructed bones were carved from wood. This was the handiwork of Rembrandt Peale (Charles’ son), William Rush, and Moses Williams. Most of the wooden bones were carved in multiple pieces, which were locked together with nails and pegs. The craftsmanship is exquisite, and the joins are difficult to make out unless you stand quite close. The mandible is entirely wood, but the teeth are real. These teeth probably came from a different individual—one tooth on the right side didn’t fit properly and was inserted sideways!

The mastodon at SAAM differs from the original presentation at Peale’s museum in a few ways. The missing top of the skull was once modeled in papier-mâché, but this reconstruction was destroyed when the Landesmuseum was bombed during the second world war. It has since been remodeled in plaster. While the mastodon was never mounted with real tusks, the mount has traditionally sported strongly curved replica tusks, more reminiscent of a mammoth. While Rembrandt Peale published a pamphlet in 1803 suggesting that the mastodon’s tusks should be positioned downward, like a pair of predatory fangs, it’s unclear if the tusks on the skeleton were ever mounted this way. At SAAM, the mastodon correctly sports a pair of nearly straight replicated tusks, which curve gently upward. 

pealemammoth

Rembrandt Peale’s carnivorous mammoth, with downward-facing tusks. Public domain.

Overall, the work of Peale, Rush, and Williams remains remarkably intact. Although it’s now lit by electric lights instead of oil lamps, this is the same beast that Humboldt encountered 220 years ago. Harvey even included a mouse in a small case at the mastodon’s feet, just as Peale did in Philadelphia. If anything, it’s remarkable how similar the mastodon mount looks to newer displays of fossil skeletons. Its creators pioneered an art form that has not changed enormously to this day.

humboldt1

Artwork of the mastodon, its excavation, and its presentation by the Peale family.

While the mastodon is undeniably the star of the show, the exhibition also utilizes artworks from the SAAM collection, loans from other institutions, and three lengthy media presentations to tell Humboldt’s story. I was excited to see Peale’s The Artist in His Museum and Exhumation of the Mastodon reunited, and the collection of George Catlin’s portraits of Native Americans is impressive. However, I was most captivated by a media presentation exploring Frederic Church’s Heart of the Andes. While the original painting had to stay at the Metropolitan Museum of Art, the video—which can be seen online here—explores the details and historical context of the painting with visually arresting style. I’ve been critical in the past of art museums’ proclivity for opaque and unwelcoming interpretive styles, but this video is great and I hope to see more efforts like it.

Overall, I was delighted by the exhibition. Seeing a fossil in an art museum, interpreted as a cultural artifact, is extraordinary. Like Humboldt himself, the mastodon is an interception of art, nature, and culture, and I relished the opportunity to meet such an icon.

Alexander von Humboldt and the United States: Art, Nature, and Culture runs through July 11, 2021. 

References

Jukar, A. 2021. Pers. comm.

O’Connor, A. 2020. Mysteries of the first mastodon.

Semonin, P. 2000. American Monster: How the Nation’s First Prehistoric Creature Became a Symbol of National Identity. New York, NY: New York University Press.

6 Comments

Filed under art history, exhibits, fossil mounts, history of science, mammals, museums, reviews