Tag Archives: pictures

The Top Seven Dinosaur Mounts #MuseumDinos

According to Twitter, today is #MuseumDinos day, possibly because it’s the 10th anniversary of the groundbreaking DinoSphere exhibit at the Indianapolis Children’s Museum. At any rate, dinosaurs in museums is a thing I’m kind of interested in, so here’s the first ever DINOSOURS! listicle: the hastily-planned and in-no-way-definitive top seven coolest dinosaur extinct animal mounts from around the world.

7. MegatheriumMuseo Nacional de Ciencias Naturales

The original Megatherium fossils have been remounted at the Museo Nacional de Ciencias Naturales. Image from TripAdvisor.

Megatherium at the Museo Nacional de Ciencias Naturales. Source

Let’s start with the eldest. There are quite a few ground sloth mounts in the world, but the Megatherium in Madrid has the distinction of being the first assembled skeleton of a prehistoric animal ever put on public display. It’s hard to imagine, but when Juan Bautista Bru created this mount in 1795, biological evolution was completely unknown, and naturalists were just beginning wrap their heads around the idea that organisms could become extinct. This Megatherium was a product of a very different era of human understanding about the natural world, but unlike other historic mounts like the Peale mastodon and Leidy Hadrosaurus, it has survived to the present day.

6. Stegosaurus and Allosaurus, Denver Museum of Nature and Science

Stegosaurus and Allosaurus

Stegosaurus and Allosaurus at the Denver Museum of Nature and Science. Source

In addition to being a respected scientist, Ken Carpenter is among the most skilled fossil mount creators working today. Among his most recognizable work is the Stegosaurus and Allosaurus face-off at the Denver Museum of Nature and Science. Featuring a remount of a historic Stegosaurus specimen and an Allosaurus discovered and mostly excavated by 12-year-old India Wood, this lively display was unveiled in 1995 as the centerpiece of the “Prehistoric Journey” exhibit. In addition to biomechanical accuracy exceeding many other modern mounts, this display by Carpenter and Bryan Small is imbued with remarkable dynamism and energy.

5. Tyrannosaurus pair, Museo Jurasico de Asturias

Tyrannosaurus at Museo Jurasico de Asturias. Source

Tyrannosaurus at Museo Jurasico de Asturias. Source

Then again, there are a lot of fighting dinosaur mounts. I love that dinosaurs had big teeth and killed things as much as the next person, but it’s refreshing to see a mount that showcases some other aspect of these animals’ lives. That said, the Spanish Museo Jurasico de Asturias is, as far as I know, the only museum to display a pair of copulating dinosaurs. The T. rex on the bottom looks like yet another Stan cast, but I’m not sure about the one on top.

4. Diplodocus, Carnegie Museum of Natural History (and elsewhere)

The original "Dippy" the Diplodocus at the Carnegie Museum of Natural History.

The original “Dippy” the Diplodocus at the Carnegie Museum of Natural History.

Like the Madrid Megatherium, this Diplodocus is intractably situated in history. If the worldwide popularity of dinosaurs could be traced to a single specimen, it would be this one. At the turn of the 20th century, Andrew Carnegie, who funded the creation of the Carnegie Museum in Pittsburgh, demanded that his museum find and display a sauropod dinosaur. This launched the Great American Sauropod Race, a frenzied competition among the United States’ large natural history museums to assemble the biggest dinosaur for display. The American Museum in New York was first across the finish line in 1905 with their composite “Brontosaurus”, although the Diplodocus collected by the CMNH team was a more complete specimen. Not to be outdone by his New York competitors, Carnegie commissioned several casts of the skeleton, which he presented to several cities in Europe and Latin America. Diplodocus casts sprang up seemingly overnight in London, Paris and elsewhere, and the original specimen was unveiled in Pittsburgh in 1907.

3. GiraffatitanMuseum für Naturkunde

Should the Giraffatitan at Berlin's Museum fur Naturkunde be displayed in Germany? Image from Wikipedia.

The biggest fossil mount in the world. Source

The Berlin Giraffatitan is on this list for two reasons. First, it’s really big. The biggest mount in the world composed mostly of original fossils, as a matter of fact, and big things are awesome. However, this display is also a fascinating example of the cultural meaning natural specimens can take on when placed on display. The fossils themselves were removed from what is now Tanzania under the authority of a colonial government that is no longer considered legitimate or appropriate, and the mount itself was completed in 1935, a time when the hall it was displayed in was filled with swastika flags. The fossils themselves (and the current museum staff that have inherited them) obviously have nothing to do with Nazis or colonial imperialism, but the display they were incorporated into is entrenched in history that should not be ignored or forgotten.

This is actually the second iteration of this display, the bow-legged original having been remounted in 2007.That’s one of the Carnegie Diplodocus casts peeking in from the right, by the way.

2. Triceratops, National Museum of Natural History

Triceratops at the National Museum of Natural History.

Triceratops at the National Museum of Natural History.

Triceratops is objectively the coolest dinosaur ever, and NMNH is the home to the definitive (and first) Triceratops mount. Charles Gilmore and Norman Boss constructed this composite skeleton in 1905 from fossils collected throughout Wyoming, resulting in a mount that was inaccurate in many details; most noticeably, the skull was too small compared to the rest of the body. Nevertheless, this Triceratops was the basis for illustrations in popular books for decades to come. In 2000, Steve Jabo and others retired the original mount, conserving the fossils and replacing them in the exhibit hall with a casted duplicate. Among other improvements, the undersized head was corrected by digitally scanning the original and 3D-printing it at a different scale.

1. Barosaurus and Allosaurus, American Museum of Natural History

Allosaurus and Barosaurus mount in the Roosevelt rotunda of the American Museum of Natural History. Source: http://www.ourtravelpics.com.

Allosaurus and Barosaurus mount at the American Museum of Natural History. Source

Was there ever any question what would be in first place ? The Barosaurus encounter in the Theodore Roosevelt rotunda at AMNH is a prime contender for the world’s most spectacular fossil mount. What I like most about this exhibit is the purposeful mise-en-scene: the dinosaurs decisively fill the space, drawing the viewer’s eye not only around the room but up the neck of the 50-foot Barosaurus toward the high vaulted ceiling.  Since 2010, visitors have been able to walk between as well as around the mounts, inserting their own human scale into the scene. According to AMNH paleontologist Mark Norrell, the objective of this exhibit was “to imagine dinosaurs as living organisms, facing challenges similar to those that confront animals today.” However, Norrell freely admits that the display was also meant to be a spectacle, emphasizing the “romantic history and grandeur of fossils”.

References

Brinkman, P.D. (2010). The Second Jurassic Dinosaur Rush: Museums and Paleontology in America at the Turn of the 20th Century. Chicago, IL: University of Chicago Press.

Carpenter, K., Madsen, J.H. and Lewis, L. (1994). Mounting of Fossil Vertebrate Skeletons. In Vertebrate Paleontological Techniques, Vol. 1. Cambridge, UK: Cambridge University Press.

López Piñero , J.M. (1988). Juan Bautista Bru (1740-1799) and the Description of the Genus MegatheriumJournal of the History of Biology. 21:1:147-163.

Norrell, M.A., Dingus, L.W. & Gaffney, E.S. (1991). Barosaurus on Central Park West. Natural History, 100(12), 36-41.

3 Comments

Filed under AMNH, CMNH, dinosaurs, fossil mounts, history of science, mammals, museums, NMNH, paleoart, reptiles

Communicating Systematics

In case you forgot, only 15% of Americans polled by Gallup accept that human beings evolved from other animals through natural processes*. This statistic has not changed meaningfully since Gallup started asking this question in 1982. This fact should be in the back of the mind of every science educator, and for that matter, every scientist, each and every day we go to work. It is a scientifically well-established fact that all life has evolved over long periods of time, and that all forms of life are related to each other. This fact is fundamental to our understanding of life on Earth. The goal of both educators and scientists is to expand our knowledge and awareness  of our world, and it is therefore disconcerting that so few people are willing (or have had to opportunity to) acknowledge the wealth of information that an understanding of evolution provides.

 *A couple complaints about that link. First, the phrasing of the question, “human beings evolved over millions of years from less advanced forms of life” (emphasis mine) is poor, read on for reasons why. Second, belief that humans evolved “with God’s guidance” does not seem like a meaningful distinction to me, and does not suggest a proper understanding of evolution.

The overwhelming number of people who do not accept evolution is intimidating. The fact that our politicians and leaders are often among this number is even more troubling.  It can be tempting to retreat into academia and  whine about the problem to our peers, or perhaps ignore it entirely. However, 30 years of unchanging results on the Gallup poll indicate that the issue is not going to go away. Both educators and scientists need to take the offensive and directly address misconceptions and misunderstandings about evolution, as well as find effective means to mitigate them.

Phylogenetic Trees

In the world of science education, one of the trickiest issues is supplying appropriate context. Although all good science can be explained in clear, readily-understandable language, most research still requires some background on the Big Ideas in science. Two huge examples are evolution by natural selection and the scientific method, which I briefly discussed here and here. Without an understanding of how scientific ideas or generated or how evolution works, discussing the finer points of, say, feeding strategies of tyrannosaurs is quite pointless. Unfortunately, even among people who accept the fact that evolution is a real phenomenon, this background all too often does not exist.

Educators need to supply the public with the context they need to understand current science, and one good area to focus is the reading of phylogenetic trees. A phylogenetic tree is a branching diagram that depicts inferred evolutionary relationships among organisms. A tree implicitly shows that included organisms descended and diversified from a common ancestor. As such, phylogenetic trees are a visual embodiment of evolutionary theory, and provide an informative narrative of the history of life.

As is often the case, David Hone has already provided a wonderful explanation of how scientists construct trees and how to read them correctly, so I’ll just drop that link and move on. The problem is that although evolutionary trees are often used to convey ideas in museum displays and general interest science articles, many lay-viewers are interpreting them inaccurately. Reading a tree requires practice and expertise that shouldn’t be taken for granted, because misinterpretations only provide fodder for the anti-evolution/anti-science lobby. Let’s go through the common misinterpretations one at a time (many of these are discussed in Torrens and Barahona 2012, a few are my own additions).

Evolution is goal-oriented. In fact, evolution is not progressive, but is the product of organisms adapting to their specific environment. When that environment changes, taxa that were once well-adapted often die out. Being “well-evolved” is therefore  fluid and transitory state. The misconception of directed evolution is probably related to ingrained western religious views of human superiority over nature. Rather annoyingly, cultural anthropologists often buy into the erroneous idea of progressive evolution, and attempt to use it as evidence that science is but one of many equally correct world-views.

There is a “main line” of evolution. This is largely the product of late 19th century drawings of trees of life which used literal trees as the basis of the diagram. Most famously, German natualist Ernst Haeckel illustrated the Systematischer Stammbaum des Menschen in his book Anthropogenie in 1874. In this drawing, the diversity of life is overlaid on a tree, which has a thick trunk running straight up to humans and other primates at the top. Again, this plays into concepts of human superiority and inevitability that have nothing to do with biological evolution.

Some contemporary species are more or less evolved than others. All contemporary species, from sponges to frogs to humans, have been evolving for the same amount of time, and are just as adapted to their environments as we are. Unfortunately, placing humans or mammals at the top or the right of phylogenetic trees seems to be an unshakable habit, even for systematists, which only encourages the notion that these taxa are somehow better.

Similarity among taxa always implies relatedness. Determining evolutionary relationships is a complex process. Modern systematists use huge matrices of independent characters to calculate the most parsimonious trees. Furthermore, Hennigean cladistics requires that relationships only be determined using synapomorphies (shared derived traits) rather than plesiomorphies (shared primitive conditions). Although the salmon and the lungfish below superficially appear more like one another than the cow, similarities like a fishy shape and a lack of a neck are primitive conditions, not specializations. The synapomorphies shared by the lungfish and cow, such as jointed limbs and the ability to breathe air, inform us that they shared a more recent common ancestor than either did with ray-finned fish.

A counter-intuitive cladogram. Subjective similarity does not always mean relatedness.

Change only occurs at nodes. The nodes in a phylogenetic tree do not represent literal evolutionary events. Rather, evolution is a continuous process. This is a case where I like to ask people who make this misconception, “how could we know that?” This can get people thinking about what evidence is available to scientists, what conclusions can be reached from these data, and what isn’t known.

Example taxa illustrated lower in the tree represent direct ancestors of taxa higher in the tree. It can be helpful to use fossil species to illustrate the general state of an evolutionary lineage at varying points in time (this is done all the time with diagrams of horse evolution). However, with few exceptions, the incomplete nature of the fossil record makes it impossible to know exactly which species were directly ancestral to others.

Traditional Linnean categories are directly applicable to trees. In fact, most  (sensible) modern systematists prefer the cladistic methodology, which requires that all groups be monophyletic (that is, made up of all descendents of a common ancestor, with no exclusions). For example, the traditonal Linnean definition of reptiles, which includes turtles, lizards, snakes, tuataras and crocodiles, is not monophyletic, because any cladistic unification of these taxa would also have to include birds.

The traditional definition of reptiles, which excludes birds, is paraphyletic.

This went on a bit longer than I expected, so I’m going to leave these issues hanging for the time being. But do not fret, I will finish this train of thought soon with a discussion of potential solutions to these misinterpretations that have been attempted, and some that may be attempted in the future.

References

MacDonald, Teresa E. “Communicating Phylogeny: Evolutionary Tree Diagrams in Museums.” 2010. Paper presented at the NARST (National Association for Research in Science Teaching).

Torrens, Erica and Barahona, Ana. “Why are Some Evolutionary Trees in Natural History Museums Prone to Being Misinterpreted?” 2012 Evolution: Education and Outreach 1-25.

Leave a comment

Filed under museums, reptiles, science communication, systematics

More Fun at the Carnegie Museum

I just have to share this picture, also from the Carnegie Museum of Natural History (see previous post). While the “Dinosaurs in their Time” gallery is fantastic, this has to be one of the worst museum displays I’ve ever seen, as well as one of the most fascinating.

Leave a comment

Filed under CMNH, collections, education, exhibits, museums, opinion, theropods