Tag Archives: science museums

Communicating Systematics

In case you forgot, only 15% of Americans polled by Gallup accept that human beings evolved from other animals through natural processes*. This statistic has not changed meaningfully since Gallup started asking this question in 1982. This fact should be in the back of the mind of every science educator, and for that matter, every scientist, each and every day we go to work. It is a scientifically well-established fact that all life has evolved over long periods of time, and that all forms of life are related to each other. This fact is fundamental to our understanding of life on Earth. The goal of both educators and scientists is to expand our knowledge and awareness  of our world, and it is therefore disconcerting that so few people are willing (or have had to opportunity to) acknowledge the wealth of information that an understanding of evolution provides.

 *A couple complaints about that link. First, the phrasing of the question, “human beings evolved over millions of years from less advanced forms of life” (emphasis mine) is poor, read on for reasons why. Second, belief that humans evolved “with God’s guidance” does not seem like a meaningful distinction to me, and does not suggest a proper understanding of evolution.

The overwhelming number of people who do not accept evolution is intimidating. The fact that our politicians and leaders are often among this number is even more troubling.  It can be tempting to retreat into academia and  whine about the problem to our peers, or perhaps ignore it entirely. However, 30 years of unchanging results on the Gallup poll indicate that the issue is not going to go away. Both educators and scientists need to take the offensive and directly address misconceptions and misunderstandings about evolution, as well as find effective means to mitigate them.

Phylogenetic Trees

In the world of science education, one of the trickiest issues is supplying appropriate context. Although all good science can be explained in clear, readily-understandable language, most research still requires some background on the Big Ideas in science. Two huge examples are evolution by natural selection and the scientific method, which I briefly discussed here and here. Without an understanding of how scientific ideas or generated or how evolution works, discussing the finer points of, say, feeding strategies of tyrannosaurs is quite pointless. Unfortunately, even among people who accept the fact that evolution is a real phenomenon, this background all too often does not exist.

Educators need to supply the public with the context they need to understand current science, and one good area to focus is the reading of phylogenetic trees. A phylogenetic tree is a branching diagram that depicts inferred evolutionary relationships among organisms. A tree implicitly shows that included organisms descended and diversified from a common ancestor. As such, phylogenetic trees are a visual embodiment of evolutionary theory, and provide an informative narrative of the history of life.

As is often the case, David Hone has already provided a wonderful explanation of how scientists construct trees and how to read them correctly, so I’ll just drop that link and move on. The problem is that although evolutionary trees are often used to convey ideas in museum displays and general interest science articles, many lay-viewers are interpreting them inaccurately. Reading a tree requires practice and expertise that shouldn’t be taken for granted, because misinterpretations only provide fodder for the anti-evolution/anti-science lobby. Let’s go through the common misinterpretations one at a time (many of these are discussed in Torrens and Barahona 2012, a few are my own additions).

Evolution is goal-oriented. In fact, evolution is not progressive, but is the product of organisms adapting to their specific environment. When that environment changes, taxa that were once well-adapted often die out. Being “well-evolved” is therefore  fluid and transitory state. The misconception of directed evolution is probably related to ingrained western religious views of human superiority over nature. Rather annoyingly, cultural anthropologists often buy into the erroneous idea of progressive evolution, and attempt to use it as evidence that science is but one of many equally correct world-views.

There is a “main line” of evolution. This is largely the product of late 19th century drawings of trees of life which used literal trees as the basis of the diagram. Most famously, German natualist Ernst Haeckel illustrated the Systematischer Stammbaum des Menschen in his book Anthropogenie in 1874. In this drawing, the diversity of life is overlaid on a tree, which has a thick trunk running straight up to humans and other primates at the top. Again, this plays into concepts of human superiority and inevitability that have nothing to do with biological evolution.

Some contemporary species are more or less evolved than others. All contemporary species, from sponges to frogs to humans, have been evolving for the same amount of time, and are just as adapted to their environments as we are. Unfortunately, placing humans or mammals at the top or the right of phylogenetic trees seems to be an unshakable habit, even for systematists, which only encourages the notion that these taxa are somehow better.

Similarity among taxa always implies relatedness. Determining evolutionary relationships is a complex process. Modern systematists use huge matrices of independent characters to calculate the most parsimonious trees. Furthermore, Hennigean cladistics requires that relationships only be determined using synapomorphies (shared derived traits) rather than plesiomorphies (shared primitive conditions). Although the salmon and the lungfish below superficially appear more like one another than the cow, similarities like a fishy shape and a lack of a neck are primitive conditions, not specializations. The synapomorphies shared by the lungfish and cow, such as jointed limbs and the ability to breathe air, inform us that they shared a more recent common ancestor than either did with ray-finned fish.

A counter-intuitive cladogram. Subjective similarity does not always mean relatedness.

Change only occurs at nodes. The nodes in a phylogenetic tree do not represent literal evolutionary events. Rather, evolution is a continuous process. This is a case where I like to ask people who make this misconception, “how could we know that?” This can get people thinking about what evidence is available to scientists, what conclusions can be reached from these data, and what isn’t known.

Example taxa illustrated lower in the tree represent direct ancestors of taxa higher in the tree. It can be helpful to use fossil species to illustrate the general state of an evolutionary lineage at varying points in time (this is done all the time with diagrams of horse evolution). However, with few exceptions, the incomplete nature of the fossil record makes it impossible to know exactly which species were directly ancestral to others.

Traditional Linnean categories are directly applicable to trees. In fact, most  (sensible) modern systematists prefer the cladistic methodology, which requires that all groups be monophyletic (that is, made up of all descendents of a common ancestor, with no exclusions). For example, the traditonal Linnean definition of reptiles, which includes turtles, lizards, snakes, tuataras and crocodiles, is not monophyletic, because any cladistic unification of these taxa would also have to include birds.

The traditional definition of reptiles, which excludes birds, is paraphyletic.

This went on a bit longer than I expected, so I’m going to leave these issues hanging for the time being. But do not fret, I will finish this train of thought soon with a discussion of potential solutions to these misinterpretations that have been attempted, and some that may be attempted in the future.

References

MacDonald, Teresa E. “Communicating Phylogeny: Evolutionary Tree Diagrams in Museums.” 2010. Paper presented at the NARST (National Association for Research in Science Teaching).

Torrens, Erica and Barahona, Ana. “Why are Some Evolutionary Trees in Natural History Museums Prone to Being Misinterpreted?” 2012 Evolution: Education and Outreach 1-25.

Leave a comment

Filed under museums, reptiles, science communication, systematics

Part 3: In Which Ben Gets to the Point

I’ve spent a couple posts raining hate on the media’s portrayal of science and  exuberantly praising science bloggers. I’d like to wrap this series up with a few suggestions for how the excellent science communication in blogs might be applied to other media, specifically museums. Science blogs currently reach a relatively small audience, but the strategies for science communication employed by bloggers can be utilized by media forms that attract far more people.

Museums occupy the lower middle range of visibility among science communication venues. America’s most-visited natural history museum, the National Museum of Natural History, had seven million visitors in 2009, a number which pales in comparison to the 431 million homes reached by the Discovery Channel, but which is considerably higher than the 500,000 2011 subscribers to Scientific American magazine. Nevertheless, museums require special recognition in that they are among the most trusted of media forms. 86% of Americans view museums as a trustworthy source of information, substantially higher than the number of Americans that trust books (61%), television (49%) or newspapers (41%). Since museums are blessed with such high public trust, the stakes are higher for museums to report information accurately.

The New Museums

The museum field has undergone a significant revolution since the 1970s, trading its traditionally academic leadership for an audience-focused and education-based model. This change is beneficial because museums are now beholden to serving the needs of the public, and are trying (and occasionally succeeding) to serve increasingly diverse audiences. Visitors are now seen as active participants in the learning process, rather than passive spectators. This new paradigm has, however, made museums vulnerable to the same pitfalls that plague other media forms. Some in the museum field have noted that concern for public interests has been in some cases led astray by devotion to entertainment. Many newer exhibits sacrifice scholarship and educational value for gimmicks and sensationalism, not unlike the practices in science journalism.

An additional hurdle facing museums is the difficulty of communicating science through objects. Museums are based around objects, but science is based on ideas and concepts. Traditionally, science exhibits would place a spotlight on spectacular objects, but would communicate very little information about why those objects are important and what scientists can learn from them. For example, a paleontology exhibit is typically centered on the enormous mounted skeletons of dinosaurs, but visitors can only learn so much from this kind of display. The audience will surely be impressed by the size of the skeletons, but will leave without understanding what those skeletons tell us about the age of the earth, the evolution and diversity of life, and the place of humans in the natural world. The lack of science in science museums is an oversight that has unfortunately stood the test of time, and museums would do well to reconsider their approach to science communication.

New Strategies

Museum workers are moving toward an audience-centered institutional mission, but have struggled to do so without resorting to the same non-educational sensationalism seen in attempts at science communication in other media. Science blogs, however, are achieving this goal right now: they foster dialogue between scientists and laypeople, without sacrificing intellectual substance.
One of the most important aspects of science blogs is that they introduce audiences to real people doing real science. Firstly, the public gains direct access to the scientific process, which instills appreciation in the reliability of scientific conclusions. Additionally, communicating with working scientists and seeing the work they do demythologizes the process of making knowledge. Science is shown as a tangible process that anybody can become involved with or contribute to. Putting a human face on the scientific process is a powerful tool for engaging the public, and one that some museums have already started using. For instance, as part of the “The Scientist is In” program at the National Museum of Natural History, staff curators set up shop in the exhibit halls, where they answer visitor questions and discuss their current research. This program has proved popular both among visitors and the scientists, who appreciate the opportunity to find out what their audiences are interested in. The implication from “The Scientist is In” and from science blogs is that the idea that scientists are universally poor communicators is false. Public education need not be the exclusive domain of education specialists, and many scientists are eager and willing to take part. Indeed, it is good practice to limit the number of layers of interpretation, as this often contributes to distortion of facts.

Another strong practice of science blogs is encouraging interaction from readers. Blog audiences enter gainful conversations with bloggers, and both parties benefit from this process. Museums can mimic this by inviting visitors to form and share their own conclusions. Process-focused science exhibits can show visitors what kinds of information scientists use to make interpretations, and then invite visitors to try it for themselves. For instance, an exhibit could use a variety of animal skeletons to demonstrate how scientists use indicators like gait and posture to determine how extinct animals may have behaved. The goal is to make the museum exhibit an interactive and intellectually involving experience. Involvement nurtures passion for content, which encourages repeat visits and deeper engagement. This is a new concept for museums, which have traditionally positioned themselves as institutions of intellectual authority. Unfortunately, there is little data on how to successfully integrate web-style discourse into a physical exhibit, because very few museums have tried it. Museums will have to be proactive in order to encourage substantive interaction with the exhibit content, or even among visitors. Some museums have successfully integrated user-generated content into exhibit spaces. For example, the “Playing with Science” exhibit at the London Science Museum invited visitors to place photographs of their own objects into the exhibit, alongside brief statements of the objects’ importance. However, something as simple as a comment board can also encourage visitors to respond intelligently to exhibit content.

Finally, museums should refocus content interpretation away from objects for their own sake and toward ideas. As stated previously, the public’s understanding of science is hindered by the media’s focus on encapsulated facts and discoveries, rather than broad, unifying concepts. Most scientific concepts are inherently logical and do not require specialized knowledge to understand if communicated properly. Evolution via natural selection is a good example. The concept that genetic variations within a population of organisms succeed or fail based on suitability to the present environment is easy to grasp, but a troublingly small percentage of the population is familiar with it. Even among visitors to natural history museums, who are more likely to accept evolution as true than the general population, less than a third are familiar with how natural selection works. Evolution is most important concept in biology and unifies the field. Therefore, it would not be difficult to integrate evolutionary concepts into virtually any exhibit on natural sciences. Communication of scientific concepts like evolution is more important for building science literacy than sharing scattered facts and impressive objects. Objects are excellent teaching tools, but are better when used as examples of underlying ideas.

Science communication in the media is at a tipping point. As the media has edged away from education and toward lowest-common-denominator entertaining, the public need for distinguishing reliable and unreliable information has increased. The misleading and inaccurate presentation of science in the media is woefully unhelpful for supporting an active and informed citizenry. Museums, with their high visibility and public trust, are well positioned to take steps toward reversing this trend. However, museum workers must first strike a balance between the sometimes conflicting goals of public appeal and accuracy. Science blogs are an excellent model for reliable, involving and applicable science communication, but they operate on a much smaller scale than museums. The challenge for museums, and any other media forms up to the challenge, will be to translate the strategies employed by blogs at the micro scale to large institutions.

Selected References

Diamond, Judy, and Margaret Evans. “Museums Teach Evolution.” Evolution. 61.6 (2007): 1500-1506.

Gregory, Jane, and Steve Miller. Science in Public: Communication, Culture and Credibility. New York: Plenum Press, 1998.

MacFadden, Bruce J., Betty A. Dunckel, Shari Ellis, Lynn D. Dierking, Linda Abraham-Silver, Jim Kisiel and Judy Koke. “Natural History Museum Visitors’ Understanding of Evolution.” Bioscience. 57.10 (2007): 875-882.

McLean, Kathleen. “Museum Exhibitions and the Dynamics of Dialogue.” Reinventing the Museum: Historical and Contemporary Perspectives on the Paradigm Shift. Ed. Gail Anderson. Lanham: Altamira, 2004. 193-211.

Simon, Nina. “Discourse in the Blogosphere: What Museums Can Learn from Web 2.0.” Museums and Social Issues. 2.2 (2007): 257-274.

Leave a comment

Filed under dinosaurs, museums, NMNH, science communication