Monthly Archives: August 2014

Hello new followers!

Apatosaurus and Camarasaurus at the Peabody Museum of Natural History. Photo by the author.

Apatosaurus and Camarasaurus at the Peabody Museum of Natural History. Photo by the author.

Thanks to the Diplodocus post being featured on Freshly Pressed, the number of people following this blog has increased fourfold in 24 hours. Welcome, everyone, and thanks for your interest! I’ve been using this blog to explore the world of mounted fossil skeletons in museums. These exhibits fascinate me because they are effectively installation art in the service of science, and what’s more, many have taken on a second life as cultural artifacts over the course of their decades on display.

Here is a sampling of key posts that have been reasonably popular…or which I am not yet completely embarrassed by:

A Primer on Fossil Mounts

Museums and the Triceratops Posture Problem – Parts One and Two

Displaying the Tyrant King – Parts One, Two, and Three

The Osborn Problem

History of Fossil Displays at the Smithsonian

The Calvert Marine Museum’s Big Foam Shark

Juan Bautista Bru and the First Fossil Mount

First Full-Sized Dinosaurs: From Crystal Palace to Hadrosaurus

Chicago’s Half-Finished Sauropod

In Defense of New Museums

Beating the Orthogenetic Horse

Leave a comment

Filed under dinosaurs, fossil mounts, history of science, museums

Museums and the Triceratops Posture Problem – Part 2

Triceratops at the National Museum of Natural History.

Triceratops “Hatcher” at the National Museum of Natural History. Photo by the author.

Back in July, I wrote about how the forelimb posture of ceratopsian dinosaurs like Triceratops has puzzled paleontologists for more than a century. Most quadrupedal dinosaurs held their front legs straight under their bodies, and it would make sense if Triceratops and its kin did the same. However, when researchers attempted to physically articulate skeletons for museum displays, they found that that the humerus would only fit properly with the scapula if it projected horizontally from the torso – like the sprawling limbs of a lizard. Over the years, new specimens, new research methods, and new technologies have all been used to help resolve this conundrum, but a consensus has not yet been reached. Of particular interest to me is the unusually central role mounted skeletons in museums have played in this biomechanical mystery. The previous post covered the historic Triceratops mounts; this entry will take a look at some more recent Triceratops displays in American museums.

The Hatcher Project

In 1998, a visitor looking at the Triceratops mount at the National Museum of Natural History happened to sneeze. To her alarm, the sneeze was enough to knock a small fragment of bone off the pelvis and onto the floor. The visitor thoughtfully informed security, and after a thorough conservation assessment by Kathy Hawks, it was determined that the 93-year-old mount needed to come off exhibit, and soon. The delicate fossils had served valiantly through 23 presidential administrations, but now it was time for the skeleton to be disassembled and preserved for posterity.

Retiring the classic Triceratops gave Ralph Chapman, head of the Museum’s Applied Morphometrics Laboratory, an opportunity to take on a project he had been germinating for some time. Chapman wanted to demonstrate the potential of 3-D scanning technology for paleontology research by creating a high-resolution digital duplicate of a dinosaur skeleton. Today, the process of making and studying digital copies of fossils is both widespread  and remarkably straightforward, but in the late 1990s it was practically science fiction. Nevertheless, the historic Triceratops was an ideal digitization candidate for several reasons. First, the digital assets would reduce handling of the delicate and aging original fossils. Second, exact copies of the scanned bones could be made from milled foam and plastics to create a replacement exhibit mount. Finally, a digital Triceratops would be a great opportunity to revisit the ceratopsid posture problem in a new way.

digital hatcher

A rendering of the digital Hatcher. Source

The ensuing Hatcher Project (the Triceratops was named in honor of John Bell Hatcher, who found the original fossils in the late 19th century) was a collaboration between Museum staff and several industry experts, including Lisa Federici of Scansite 3-D Services and Arthur Andersen of Virtual Surfaces, Inc. The first step was to place stickers on 100 key points on the Triceratops. These points were recorded with a surface scanner, so that the historic mount could be digitally recreated in its original pose. After that, fossil preparators Steve Jabo and Pete Kroehler carefully dismantled the skeleton. Each bone from the skeleton’s right side* was then scanned individually, producing 20 gigabytes of data (you’re supposed to gasp…again, this was the late 90s).

*Bones from the right side were mirrored to reproduce the left half of the skeleton. 

Since the original mount had been a somewhat disproportionate composite, the team made a few changes when building the new digital Hatcher. Some elements, including the undersized skull, were enlarged to match the rest of the skeleton. In addition, parts that had either been sculpted or were not actually Triceratops bones – such as the dorsal vertebrae and the hindfeet – were replaced with casts acquired from other museums. The result was the world’s first complete digital dinosaur, and shortly afterward, the first full-sized replica skeleton generated from digital assets.

Updated "Hatcher" mount's rarely seen right side. Source

Hatcher’s seldom seen right side was briefly exposed recently, before the mount was moved to a temporary second floor location. Source

In April 2000, the Hatcher team convened at NMNH to determine how the new replica mount would be posed. Chapman, Jabo, and Kroehler were joined by Kent Stevens of the University of Oregon, Brenda Chinnery of Johns Hopkins University, and Rolf Johnson of the Milwaukee Public Museum (among others) to spend a day working with a 1/6th scale model produced by stereolithography specialist Jason Dickman. The miniature Hatcher allowed the researchers to physically test the skeleton’s range of motion without the difficulty of manipulating heavy fossils.

The day was full of surprises. The team was impressed by the wide range of motion afforded by the ball and socket joint connecting the Triceratops skull to the atlas. They also found that the elbow joints could lock, which may have been helpful for shock absorption when the animal smashed things with its face. Nevertheless, when it came time to articulate the humerus and scapula, the team essentially validated Charles Gilmore’s original conclusion that sprawling forelimbs worked best (although the new Hatcher mount stands a little straighter than the historic version, and a lot straighter than the New York Triceratops). While other paleontologists had used indirect evidence (like evenly spaced trackways and wide nasal cavities for sucking down lots of oxygen) to support the idea that Triceratops was a straight-legged, fast-moving rhino analogue, articulating the actual bones showed once again that ceratopsid forelimbs had to sprawl.

Houston and Los Angeles Mounts

LACM Triceratops mount. Photo by Heinrich Mallison, many more here.

LACM Triceratops mount. Photo by Heinrich Mallison, many more here.

Hatcher is the Triceratops I am best acquainted with, and I can’t help but think of it as the definitive example of this animal. However, two new Triceratops mounts demonstrate a radically different take on ceratopsid posture. In 2011, the Natural History Museum of Los Angeles County completed a thoroughly renovated dinosaur hall, which features a brand-new Triceratops mount at its entrance. Like Hatcher, this skeleton is a composite of several specimens, in this case excavated in Montana by LACM teams between 2002 and 2004. Phil Fraley Productions, the exhibit fabrication company behind Sue and the Carnegie Museum dinosaurs, was responsible for mounting the fossils. The primary specimen (LACM 141459, which provided the skull and right forelimb) is notable because it included a completely intact and articulated front leg. Although the analysis of this important find has yet to be published, exhibit curator Luis Chiappe tellingly chose an erect, rather than sprawling, forelimb posture.

Meanwhile, the Houston Museum of Nature and Science opened its colossal, 30,000 square foot Hall of Paleontology in 2012. Among the dozens of mounted skeletons on display is Lane, reportedly the most complete Triceratops ever found. The museum purchased the skeleton from the Black Hills Institute, and the company also constructed the display mount. Robert Bakker, who curates the Hall of Paleontology, specifically requested that Lane be given a straight-legged, trotting pose. With two legs off the ground, this display emanates strength and speed.

"Lane" at Houston Museum

“Lane” at Houston Museum of Nature and Science. Source

So how did the Los Angeles and Houston exhibit teams manage to construct plausible-looking, straight-legged Triceratops mounts? Since full descriptions of either specimen have not been published, it’s hard to say for sure. From the look of it, however, the new mounts both have narrower, flatter rib cages (as suggested by Paul and Christiansen), which allows more room for the elbow. Likewise, the shoulder girdles are lower than Hatcher’s, and they seem to have been rotated closer to the front of the chest. Also note that the forelimbs of the Los Angeles and Houston mounts are not completely erect – they are strongly flexed at the elbow, as is typical of many quadrupedal mammals.

These new mounts don’t mean the Triceratops posture problem is resolved, though. The angle of the ribs and the position of the scapula are apparently both touchy subjects, so alternate interpretations are sure to arise in the future. After all, Triceratops forelimb posture isn’t just an esoteric bit of anatomical trivia: it has major implications for the speed and athleticism of an extremely successful keystone herbivore. Understanding the limitations on this animal’s movement and behavior can contribute to our understanding of the ecosystem and environmental pressures in late Cretaceous North America. As such, I am eagerly awaiting the next round in this 100-plus year investigation.

A big thank you to Rebecca Hunt-Foster and Ralph Chapman for sharing their time and expertise while I was writing this post!

References

Chapman, R. Personal communication.

Chapman, R., Andersen, A., Breithaupt, B.H. and Matthews, N.A. 2012. Technology and the Study of Dinosaurs. The Complete Dinosaur, 2nd Edition. Bloomington, IN: Indiana University Press.

Fujiwara, S. and Hutchinson, J.R. 2012. Elbow Joint Adductor Movement Arm as an Indicator of Forelimb Posture in Extinct Quadrupedal Tetrapods. Proceedings of the Royal Society 279: 2561-2570.

Hunt-Foster, R. Personal communication.

Paul, G.S. and Christiansen, P. 2000. Forelimb Posture in Neoceratopsian Dinosaurs: Implications for Gait and Locomotion. Paleobiology 26:3:450-465.

16 Comments

Filed under anatomy, dinosaurs, fossil mounts, history of science, marginocephalians, museums, NMNH, reptiles

The Diplodocus seen ’round the world

1st cast in spot of honor

The first cast of the Carnegie Diplodocus holds court at London’s Natural History Museum. Source

The story of Andrew Carnegie’s Diplodocus will surely be well known to most readers. As the legend goes, Carnegie the millionaire philanthropist saw a cartoon in the November 1898 New York Journal depicting a sauropod dinosaur peering into the window of a skyscraper. He immediately contacted the paleontology department at the newly established Carnegie Museum of Natural History in Pittsburgh, and offered ample funding to find a sauropod skeleton for display. So began a frantic competition among the United States’ large urban museums to be the first to collect and mount a sauropod—the bigger the better.

The American Museum of Natural History was first across the finish line, unveiling their composite Apatosaurus in February of 1905. By that time, the Carnegie team had already found a sauropod skeleton of their own—a Diplodocus—near Medicine Bow, Wyoming. Unfortunately, they had nowhere to display it, as the Carnegie Museum building was still far from finished. Unwilling to be bested by his New York competition, Andrew Carnegie offered his chum King Edward VII a complete plaster replica of the Diplodocus, and hired a team of modelmakers to help make it happen. The arrival of the facsimile Diplodocus at the British Museum (now the Natural History Museum) in London was celebrated with a white tie event presided over by Carnegie and Baron Avebury, who spoke on behalf of the king. The London Diplodocus was on display two months after the AMNH Apatosaurus, and the original skeleton was unveiled in Pittsburgh in 1907.

diplodocus_nocopyright

In March 1905, a classy shindig celebrated the arrival of the first replica Diplodocus in London.

That’s usually where the Diplodocus story ends, with a footnote that nine more Diplodocus replicas were later manufactured and presented to heads of state throughout Europe and Latin America. I’d like to explore those subsequent displays in more detail. The Carnegie Diplodocus was the first mass-produced dinosaur, and by 1932 it appeared in no less than ten virtually identical displays across three continents. Taylor characterizes Carnegie’s sauropod as “the single most viewed skeleton of any animal in the world”, and its scientific, social, and even political ramifications are both wide-reaching and fascinating.

Building a Sauropod

The original CMNH Diplodocus mount, in the hall built specifically to accomodate it. Source

The real CM 84 has been displayed in Pittsburgh since 1907. Source

The Diplodocus in question is specimen CM 84, recovered in 1899 in Albany County, Wyoming. The skeleton was about 60% intact and remains one of the most complete sauropod specimens ever found. The ubiquitous John Bell Hatcher described the fossils in 1901, coining the new species Diplodocus carnegiei after the project’s benefactor. Arthur Coggeshall of the Carnegie Museum was primarily responsible for preparing and casting the fossils. He was initially supervised by Hatcher, but William Holland took over when Hatcher died in 1904. Holland deferred to Hatcher’s judgement in most cases, although he was not shy about voicing his disagreement. For example, Hatcher had reconstructed the Diplodocus forefeet with slightly elevated digits, but Holland (incorrectly) thought they should be flat and splayed.

As is typical of dinosaur mounts, the incomplete primary specimen was supplemented with other fossils to produce a full skeleton. The skull, for instance, was a cast of USNM 2673, a specimen on display at the Smithsonian. A number of missing bones, including most elements of the forelimbs, were sculpted using a smaller Diplodocus specimen for reference. Although it took longer to produce than the AMNH Apatosaurus, contemporary paleontologists generally agreed that Carnegie’s Diplodocus was the superior sauropod mount. Not only was its pose more natural and lifelike, but the underlying steel armature was cleverly hidden. It’s difficult to overstate the challenges of assembling a mounted skeleton on this scale, and in its day the Diplodocus was the best in the world.

Roll Call

dip_mexico

The Chopo University Museum in Mexico City received the 9th Diplodocus cast in 1929. Source

As mentioned, the first replica Diplodocus was unveiled in London in 1905, and the original fossils were ready for display in 1907. French and German dignitaries were present at an event in Pittsburgh celebrating its completion, and Andrew Carnegie promised both countries Diplodocus casts of their own. Once again, Coggeshall and Holland led the creation of the new mounts, a task they would repeat many times in the years to come. Playing precisely to cartoonish national stereotypes, the Germans provided a detailed plan and ambitious schedule for the project, while the French acted coy, then threw a lavish party when the mount was ready. Diplodocus replicas were on display at the National Natural History Museum in Paris and the Humboldt Museum in Berlin before the end of 1908, but the Pittsburgh team already had orders for a new batch of mounts. By early 1910, three new Diplodocus were on exhibit at the Museum for Paleontology and Geology in Bologna, Italy, the Natural History Museum in Vienna, Austria, and the Zoological Museum in St. Petersburg, Russia. The La Plata Museum in Buenos Aires, Argentina and the National Museum of Natural Science in Madrid, Spain received their Diplodocus mounts in 1912 and 1913, respectively, bringing the total number of replicas up to eight by the onset of World War I.

The war put a damper on this friendly exchange of dinosaurs, and Carnegie’s death in 1919 brought the Diplodocus diaspora to a temporary end. However, in 1929 Louise Carnegie, wife of Andrew, commissioned an additional cast as a gift for Alfonso Herrera of the Chopo University Museum in Mexico City. Herrera originally asked for a bronze cast for outdoor display, but when this proved prohibitively expensive, a plaster version was produced instead. In 1932, the Carnegie Museum traded a Diplodocus replica for a collection of German fossils from the Paleontological Museum in Munich. This copy has never been mounted or displayed. The last Diplodocus cast from the original molds was forged in 1957. Made from concrete, this mount was displayed outdoors for many years at the Utah Field House Museum in Vernal, Utah.

goofy vernal field house concrete cast

The 11th and final facsimile Diplodocus made from the original molds was this concrete version, on exhibit in Vernal, Utah for many years.

Most of the historic Diplodocus mounts remain on display today. The London Diplodocus was taken off exhibit during World War II, but in 1979 it was given a position of honor in the museum’s entrance hall. Later, it was completely restored and remounted with its tail held aloft. The Berlin, Buenos Aires, and Bologna Diplodocus mounts have also been upgraded with modern poses, but the others retain their historic, tail-dragging posture, looking exactly as they did a century ago. The St. Petersburg mount was circulated among a number of Russian museums, and may have been destroyed in an effort to make new molds from the bones (Edit: The Russian mount is still on display at the Orlov Museum for Paleontology—see comments). The concrete Diplodocus in Vernal has likewise been retired, but it was used to create two new casted skeletons, now on display in Utah and Nevada.

Opportunities for Science

St. Petersburg

The weird bow-legged Diplodocus in St. Petersburg looks more like the original USNM Triceratops than Tornier’s take on the sauropod.  Source

The sudden availability of identical Diplodocus skeletons presented an unusual opportunity for international scientists, allowing researchers based thousands of miles apart to study and compare notes on the same bones. Perhaps inevitably, a few European scientists were not happy with Holland and Coggeshall’s take on the sauropod. The best-known dissenter was Gustav Tornier, who rejected the straight-limbed reconstruction of Diplodocus, arguing instead that the sauropod sprawled like a crocodile. The German scientist provided an illustration of this alternate stance, in which the poor dinosaur’s arms appear to project from the base of its neck. Holland responded with a particularly harsh rebuttal (backed by several European scientists), and Tornier declined to push the issue further in print.

Dinosaurs for everyone

La plata

Diplodocus cast number seven at the La Plata Museum in Buenos Aires. Source

The most lasting influence of the Carnegie Diplodocus is certainly it’s cultural impact. If any one specimen can be credited with inspiring the global popularity of dinosaurs, it was this one. Thanks to Carnegie, citizens of 11 different nations had their first opportunity to stand in the presence of a giant dinosaur, and to experience the scale and splendor of a creature that completely dwarfed any modern land animal. In every nation where a new Diplodocus was installed, the local press adored the creature, never failing to point out its tiny head and presumed stupidity. Diplodocus was an endearing oaf, and for a time, its name was synonymous with dinosaurs and prehistory in general.

What was the significance of Diplodocus to all these people? It’s difficult not to think of it as a vanity project for Andrew Carnegie*, an opportunity to rub shoulders with European royalty and flaunt his wealth and generosity. One might also consider the Diplodocus an expression of America’s economic and technological might, or perhaps a harbinger of the United States’ role in globalization and mass production. French writer Octave Mirbeau seemed to be thinking along those lines when he lamented the mighty dinosaur being reduced to a crass, populist display. According to Carnegie himself, however, the goal was nothing less than world peace: he wanted to bring people together over their shared enthusiasm for the dinosaur. Too bad World War I came along and ruined the sauropod love-in.

*If the accolades went to anyone’s head, it was Holland’s. During his world tour assembling sauropod mounts, he was given countless awards, including the French Legion of Honor and German Knight’s Cross. Holland carefully added each new medal to his portrait at the Carnegie Museum.
Original Diplodocus

The original Diplodocus skeleton was remounted at the Carnegie Museum in 2007. Photo by the author.

On both sides of the Atlantic, Diplodocus was a shared point of reference and a beloved symbol. Most commonly, Diplodocus was the butt of a joke: from politicians to athletes to heavy machinery, anything big, slow, and not especially bright was likened to the dinosaur. My favorite anecdote on the subject comes from Nieuwland: during World War I, soldiers from different nations with different languages had the word “Diplodocus” in common, and used it to describe the heavy, plodding tanks.

Today, we think of Diplodocus and it’s ilk very differently. Sauropods weren’t ungainly dolts—they were surprisingly nimble and extremely successful megaherbivores, unchallenged in their dominance for 140 million years. Still, it’s difficult to think of single fossil that has matched the global cultural impact of CM 84. There are far more copies of Stan the T. rex on display, and Sue is widely known by name, but really, the only contender that even comes close is Archaeopteryx. With eleven versions still on display, Carnegie’s legendary Diplodocus lives on.

References

Brinkman, P.D. 2010. The Second Jurassic Dinosaur Rush: Museums and Paleontology in America at the Turn of the 20th Century. Chicago, IL: University of Chicago Press.

Holland, W.J. 1906. The osteology of Diplodocus Marsh with special reference to the restoration of the skeleton of Diplodocus carnegiei Hatcher, presented by Mr. Andrew Carnegie to the British Museum, May 12, 1905. Memoirs of the Carnegie Museum. Vol. 2, No. 6, 225-278.

Nieuwland, I. 2010. The colossal stranger: Andrew Carnegie and Diplodocus intrude European Culture, 1904-1912. Endeavour. Vol 34, No. 2.

Taylor, M.P. 2010. Sauropod dinosaur research: a historical review. Geological Society, London, Special Publications. Vol. 343, pp. 361-386.

28 Comments

Filed under CMNH, dinosaurs, fossil mounts, history of science, museums, reptiles, sauropods