Category Archives: reptiles

Hatcher, Stan, and the Changing Identities of Fossil Mounts

Photo by the author

Hatcher the Triceratops and Stan the T. rex in the NMNH fossil hall, early 2014. Photo by the author.

Although the east wing fossil halls are closed for renovation until 2019, the National Museum of Natural History will not be without a dinosaur display for much longer. An interim exhibit entitled “The Last American Dinosaurs” will open later this month, occupying the space that formally held the “Written in Bone” exhibition. The Last American Dinosaurs will cover a small but important slice of the age of dinosaurs: the final ecosystem to grace North America before the extinction event 66 million years ago. While the new exhibit will feature several show-stealing dinosaurs, the main message is that these animals lived within a complete and complex ecosystem, just like the animals of today. The exhibit will also cover the phenomenon of extinction, and how massive environmental change (whether caused by a giant space rock or by human activity) can drastically alter the course of life on Earth.

What I’d like to discuss in this post are the two dinosaurian centerpieces of the exhibit: Hatcher the Triceratops and Stan the Tyrannosaurus. Both mounts stood in the classic fossil hall for years, and I’ve already written extensively about each of them. Nevertheless, these two dinosaurs nicely encapsulate the history of mounted fossil skeletons, as well as the changing face of museum paleontology. As the ambassadors to the Smithsonian’s dinosaur collection for the next five years, I think it’s worth revisiting their origin stories.

The First Triceratops

Hatcher in Hall of Extinct Monsters

This Triceratops stood in the NMNH fossil hall for nearly 90 years. Photo courtesy of the Smithsonian Institution Archives.

The Smithsonian Triceratops hails from what we might call the golden age of museum paleontology. Mounted dinosaur skeletons were an integral part of the rise of large urban natural history museums at the turn of the 20th century. The opening of the American western frontier revealed an unprecedented treasure trove of fossils, far greater than what was previously known in Europe. As a result, paleontology became one of the first realms of science in which Americans were leaders, and patriotism was a significant factor in the growing public enthusiasm for extinct monsters. Wealthy benefactors of recently formed institutions like the American Museum of Natural History and the Field Columbian Museum envisioned the mounted skeletons of dinosaurs as an opportunity to increase attendance and public interest, and they provided ample funding to find fossils for display. These efforts were not wasted, as the golden age fossil mounts have been enjoyed for generations…and most are still on display today.

It’s easy to get caught up in the romanticism of this era of discovery and exposition. Golden age fossil mounts were forged into being entirely in-house. At a given museum, the same small group of staff was frequently responsible for finding, preparing, describing, naming and mounting a new dinosaur. As such, fossil mounts were typically exclusives to particular museums, and they garnered significant amounts of institutional and regional pride. New York had “Brontosaurus” and Tyrannosaurus. Pittsburgh had Diplodocus. And for more than 20 years, Washington, DC had the world’s only mounted Triceratops.

Hatcher in Sunday star

A spread in the June 11, 1905 Sunday Star profiled the Smithsonian Triceratops. Image courtesy of the Smithsonian Institution Archives.

Built in 1905 by Charles Gilmore and Norman Boss, the Smithsonian Triceratops has been a Washington, DC attraction for longer than the Lincoln Memorial. Like most turn of the century dinosaur mounts, it is not a single specimen but a composite of several individuals. The fossils were recovered from Wyoming by the prolific fossil hunter John Bell Hatcher, working in the employ of O.C. Marsh and the United States Geological Survey*. USNM 4842, the most complete partial skeleton available, provided the torso and pelvis, while the remains of at least six other Triceratops filled in the rest of the mount.

*Incidentally, this means the Triceratops doesn’t quite fit the story I outlined above. It was not discovered or named by Smithsonian scientists – instead, the Smithsonian inherited the fossils Marsh collected for the federal government when he was through with them.

Even though it was a slightly disproportionate chimera, for experts and laypeople alike the Smithsonian Triceratops mount was Triceratops. Virtually every illustration of the animal for decades after the mount’s debut dutifully copied its every eccentricity, including the slightly undersized head and excessively sprawled forelimbs. If you can strain your eyes to read Sunday Star article above, it’s also interesting to see how the mount was presented to the public. Even in an era when museum displays were unapologetically created by experts for experts, the Triceratops is repeatedly likened to a fantastical monster. Although the creation of the mount was an important anatomical exercise for the small community of professional paleontologists, it seems that for most visitors a display like this primarily served as whimsical entertainment.

Hatcher_tempdisplay

Hatcher was moved to his new home on the second floor at the beginning of the summer. Photo by the author.

After a brief stint in the original United States National Museum (now called the Arts and Industries Building), Gilmore and Boss’s Triceratops was transferred the east wing of the present-day NMNH in 1911. It remained there for 90 years, until the aging and deteriorating fossils were finally disassembled and retired to the collections. In their place, Smithsonian staff created an updated replica skeleton, called “Hatcher”, from digital scans of the original bones. This version is the Triceratops that will be on display in The Last American Dinosaurs.

A Prefab Tyrannosaurus?

Stan. Photo by Chip Clark.

Stan the T. rex, as seen in the classic NMNH fossil hall. Photo by Chip Clark.

Since 2000, Hatcher the Triceratops was in a permanent face-off with another replica mount, Stan the Tyrannosaurus. Unlike Hatcher, Stan is not based on fossils in the Smithsonian collection. This T. rex cast was purchased from the Black Hills Institute, a private company that  produces and sells replica fossil skeletons (as well as original specimens, which is another issue entirely). Discovered by avocational fossil hunter Stan Sacrison in 1987, Stan the dinosaur was excavated and is now owned by BHI. Since 1995, BHI has sold dozens of Stan replicas to museums and other venues. The Smithsonian acquired its version in 1999, in part because of visitor demand for the world’s most famous dinosaur, but also apparently as a consolation prize for missing out on Sue.

Clearly, much has changed in the way museums source their dinosaurs. Rather than creating fossil mounts on-site, museums frequently contract out the production to exhibit fabrication companies like Research Casting International, Gaston Design, and the aforementioned Black Hills Institute. These companies can construct mounts using fossils or casts from a particular museum’s collection, but they also offer catalogs of made-to-order skeletons. Thanks to these exhibit companies, more or less identical copies of certain dinosaurs are now on display all over the world.  In Stan’s case, the Smithsonian version has a twin just seven miles north at the Discovery Communications building in Silver Spring.

Stan can be set up in a under an hour. This version was recently displayed at Farmington Museum.

Stan replicas can be set up in a under an hour. This version was recently displayed at New Mexico’s Farmington Museum. Source

An argument could be made that this degree of replication lessens the impact and cultural value of dinosaur displays. How much allure does a mount have when identical versions can be seen at dozens of other locations, including corporate offices and amusement parks? I would counter that this is a small price to pay when we consider the substantial educational benefits of this unprecedented availability of dinosaur skeletons. Widespread casts like Stan give people all over the world the opportunity to see a T. rex in person, an experience that was until recently limited to those with the means to travel to a handful of large cities. Typically priced in the tens of thousands of dollars, dinosaur casts certainly aren’t cheap, but they are still within the means of many small to mid-sized local museums.

Furthermore, these casts are hardly rolling off of assembly lines. They are exact replicas of real fossils, and require a tremendous amount of experience and skill to produce. Mounts are manufactured as needed, and are customized to meet the needs of the specific museum. Meanwhile, museums still employ scientists who collect new fossils for their collections. The difference is that these collecting trips usually seek to answer specific research questions, rather than going after only the biggest and most impressive display specimens. Finally, museums definitely haven’t outsourced exhibit production entirely. All summer at NMNH, in-house preparators have been working in collaboration with contractors from Research Casting International to dismantle the historic fossil exhibits in preparation for the upcoming renovation.

Reassembling Stan upstairs. Photo by Abby Telfer.

Reassembling Stan for The Last American Dinosaurs. Photo by Abby Telfer.

There’s one more change for the better in modern paleontology exhibits. When the Smithsonian Triceratops was first introduced to the world in 1905, natural history displays tended to focus on the breadth of collections. Curators composed exhibits with other experts in mind, and the non-scholars that actually made up the majority of museum visitors were not directly catered to. Without any context to work with, fossil mounts were little more than toothy spectacles for most visitors. Today, museum staff create exhibits that tell stories. The Last American Dinosaurs has been explicitly designed to contextualize the dinosaurs – to show how they fit into the history of life on Earth, and why their world is meaningful today. How successful will this be? I’ll report back after the exhibit opens on November 25th.

2 Comments

Filed under dinosaurs, exhibits, fossil mounts, history of science, marginocephalians, museums, NMNH, reptiles, theropods

Bully for Camarasaurus

Note: This post was written in 2014. It predates Emanuel Tschopp and colleagues’ landmark paper which, among other things, resurrected the genus Brontosaurus. I’ve attempted to update the taxonomy where appropriate, but it may still be a bit of a mess.

The story of the mismatched head of Brontosaurus is one of the best known tales from the history of paleontology. I think I first heard it while watching my tattered VHS copy of More Dinosaurs—scientists had mistakenly mounted the skull of Camarasaurus on an Apatosaurus skeleton, and the error went unnoticed for decades. The legend has been repeated countless times, perhaps because we revel in the idea that even experts can make silly mistakes. Nevertheless, I think it’s time we set the record straight: nobody ever mistakenly placed a Camarasaurus skull on Apatosaurus. The truth is a lot more nuanced—and a lot more interesting—than a simple case of mistaken identity.

Intrinsically related to the head-swap story is the replacement of “Brontosaurus” with “Apatosaurus” in the popular lexicon. This is well covered elsewhere, so I’ll be brief. Scientific names for animals are governed by the International Code of Zoological Nomenclature, which includes the principle of priority: if an organism has been given more than one name, the oldest published name is the correct one. Leading 19th century paleontologist O.C. Marsh named Apatosaurus ajax in 1877, based on a vertebral column discovered in the Morrison Formation of Colorado. Two years later, Marsh introduced Brontosaurus excelsus to the world, from a more complete specimen uncovered in rocks of the same age in Wyoming. Like many of Marsh’s publications, these descriptions were extremely brief, offering a scant two paragraphs for each taxon. However, Marsh did provide a longer description of Brontosaurus in 1883, complete with the first-ever restoration of the complete skeleton.

This is not a Camarasaurus skull.

Come play with us, Brontosaurus…forever and ever and ever. Photo courtesy of the AMNH Research Library.

In 1903, Elmer Riggs of the Field Museum of Natural History underwent a survey of sauropod fossils held at various museums and concluded that Brontosaurus excelsus was too similar to Apatosaurus to merit its own genus. The name “Brontosaurus” was dropped, and the species became Apatosaurus excelsus for most of the 20th century. However, a substantial re-evaluation of diplodocoid sauropods by Emanuel Tschopp and colleagues in 2015 reversed Riggs’ decision. So the name Brontosaurus is back, but keep in mind that the species excelsus never actually went anywhere—it was just hidden under the Apatosaurus umbrella. Following Tschopp et al., Apatosaurus and Brontosaurus were distinct animals that lived in the same environment.

So how does the mismatched head fit into all of this? The short answer is that it doesn’t. The fact that some Apatosaurus mounts had incorrect heads for much of the 20th century has nothing to do with which name was being used at any given time, although the two issues have often been conflated in popular books. I suspect the two stories got mixed up because paleontologists were pushing to correct both misconceptions around the same time during the dinosaur renaissance.

Marsh's Brontosaurus

Marsh’s second and definitive Brontosaurus reconstruction, first published in 1891.

Let’s go back to Marsh’s 1891 Brontosaurus reconstruction*, pictured above. The Brontosaurus type specimen did not include a head, and many have reported that Marsh used a Camarasaurus skull in this illustration. However, this would not have been possible, because the first complete Camarasaurus skull wasn’t discovered until 1899. What Marsh had instead was a few fragmentary bits of Camarasaurus cranial material, plus a snout and jaw (USNM 5730) now thought to be Brachiosaurus (more on this at SV-POW). Although these pieces were found far from the Brontosaurus quarry, Marsh extrapolated from them to create the best-guess skull that appears in his published reconstruction.

*Note that this is the second of two Brontosaurus reconstructions commissioned by Marsh. The first drawing, published in 1883, has somewhat different skull, but it still does not resemble Camarasaurus. 

Although Stephen Gould states in his classic essay “Bully for Brontosaurus” that Marsh mounted the Brontosaurus holotype at the Yale Peabody Museum, Marsh never saw his most famous dinosaur assembled in three dimensions. In fact, Marsh strongly disliked the idea of mounting fossil skeletons, considering it a trivial endeavor of no benefit to science. Instead, it was Adam Hermann of the American Museum of Natural History, supervised by Henry Osborn, who built the original Brontosaurus/Apatosaurus mount (AMNH 460), six years after Marsh’s death in 1899.

Counterclockwise from top:

Clockwise from top: AMNH sculpted skull (Source), Peabody Museum sculpted skull, real Apatosaurus skull (Source), and real Camarasaurus skull.

To create the mounted skeleton, Hermann combined fossil material from four separate individuals. All of the material had been collected by AMNH teams in Wyoming specifically for a display mount—and to beat Andrew Carnegie at building the first mounted sauropod. Like Marsh, however, they failed to find an associated skull (a Camarasaurus-like tooth was allegedly found near the primary specimen, but it has since been lost). Even today, sauropod skulls are notoriously rare, perhaps because they are quick to fall off and roll away during decomposition. Instead, Hermann was forced to make a stand-in skull in plaster. Osborn explained in an associated publication that this model skull was “largely conjectural and based on that of Morosaurus” (Morosaurus was a competing name for Camarasaurus that is no longer used).

Was it really, though? The sculpted skull is charmingly crude, so the overt differences between the model and a real Camarasaurus skull (top and bottom left in the image above) might be attributed to the simplicity of the model. Note that there isn’t even an open space between the upper and lower jaws! Still, Hermann’s model bears a striking resemblance to Marsh’s illustration in certain details, principally the elongate snout and the very large, ovoid orbit. It’s reasonable to assume that Hermann used Marsh’s speculative drawing as a reference, in addition to any actual Camarasaurus material that was available to him. At the very least, it is incorrect to say that AMNH staff mistakenly gave the mount a Camarasaurus skull, since Osborn openly states that it is a “conjectural” model.

A young Mark Norell

A young Mark Norell leads the removal of the sculpted skull from the classic AMNH Apatosaurus. Source

In 1909, a team led by Earl Douglass  of the Carnegie Museum of Natural History finally discovered a real Apatosaurus skull (third image, lower right). They were working at the eastern Utah quarry that is now Dinosaur National Monument, excavating the most complete Apatosaurus skeleton yet found (CM 3018). The skull in question (cataloged as CM 11162) was not connected to the skeleton, but Douglass had little doubt that they belonged together. Back at the Carnegie Museum, director William Holland all but confirmed this when he found that the skull fit neatly with the skeleton’s first cervical vertebra. As he wrote at the time, “this confirms…that Marsh’s Brontosaurus skull is a myth.”

The Carnegie team prepared and mounted the new Apatosaurus, and Holland initially planned to use the associated skull. However, when Osborn heard about this he threatened to ruin Holland’s career if he went through with it. You see, the new skull looked nothing like the round, pseudo-Camarasaurus model skull on the AMNH mount. Instead, it was flat and broad, like a more robust version of Diplodocus. Osborn wasn’t about to let Holland contradict his museum’s star attraction, and Holland backed down, never completing his planned publication on the true nature of Apatosaurus. Meanwhile, the mounted skeleton at the Carnegie Museum remained headless until Holland’s death in 1932. After that, museum staff quietly added a Camarasaurus-like skull. This was an important event, as it would be the first time an actual cast skull of Camarasaurus (as opposed to a freehand sculpture) would be attached to a mounted Apatosaurus skeleton. While I’ve had no luck determining precisely who was involved, Keith Parsons speculated that the decision was made primarily for aesthetic reasons.

Carnegie Museum Brontosaurus circa 1934. Source

Carnegie Museum Apatosaurus alongside the famed Diplodocus, sometime after 1934. Source

Elmer Riggs assembled a third Apatosaurus mount (FMNH P 25112) at the Field Museum in 1908. Riggs had recovered the articulated and nearly complete back end of the sauropod near Fruita, Colorado in 1901, but was unable to secure funding for further collecting trips to complete the mount. Riggs was forced to mount his half Apatosaurus as-is, and the absurd display stood teetering on its back legs for 50 years. Finally, Riggs’ successor Orville Gilpin acquired enough Apatosaurus fossils to complete the mount in 1958. As usual, no head was available, so Gilpin followed the Carnegie Museum’s lead and gave the mount a cast Camarasaurus skull.

The completed mount as it stood in the 1970s, Camarasaurus head and all.

Orville Gilpin finally completed the FMNH Apatosaurus in 1958.

The last classic apatosaurine mount was built at the Yale Peabody Museum of Natural History in 1931, using Marsh’s original Brontosaurus excelsus holotype (YPM 1980) and a lot of plaster padding. The skull this mount originally sported (third image, upper right) is undoubtedly the strangest of the lot. A plaster replica sculpted around a small portion of a real Camarasaurus mandible, this model doesn’t look like any known sauropod. The overall shape is much more elongated than either Camarasaurus or the AMNH model, and may have been inspired by Marsh’s hypothetical illustration. Other details, however, are completely new. The anteorbital fenestrae are thin horizontal slashes, rather than the wide openings in previous reconstructions, while the tiny, forward-leaning nares don’t look like any dinosaur skull—real or imaginary—I’ve ever seen. The sculptor is sadly unknown, but this model almost looks like a committee-assembled combination of the Marsh drawing, the AMNH model, and CM 11162 (a.k.a. the real Apatosaurus skull).

During the mid-20th century, vertebrate paleontology lapsed into a quiet period. Although the aging dinosaur displays at American museums remained popular with the public, these animals came to be perceived as evolutionary dead-ends, of little interest to the majority of scientists. The controversies surrounding old mounts were largely forgotten, even among specialists, and museum visitors saw no reason not to accept these reconstructions (museums are, after all, one of the most trusted sources of information around).

A postcard

The Peabody Brontosaurus with its original head. Note that the Camarasaurus in the foreground also has a sculpted skull.

This changed with the onset of the dinosaur renaissance in the 1970s and 80s, which brought renewed energy to the discipline in the wake of new evidence that dinosaurs had been energetic and socially sophisticated animals. In the midst of this revolution, John McIntosh of Wesleyan University re-identified the real skull of Apatosaurus. Along with David Berman, McIntosh studied the archived notes of Marsh, Douglass, and Holland and tracked down the various specimens on which reconstructed skulls had been based. They determined that Marsh’s restoration of the Brontosaurus skull, long accepted as dogma, had in fact been almost entirely arbitrary. Following the trail of guesswork, misunderstandings, and scientific inertia, McIntosh and Berman proved that Holland had been right all along. The skull recovered at Dinosaur National Monument along with the Carnegie Apatosaurus was in fact the only legitimate skull ever found from an apatosaurine up to that point. In 1981, McIntosh himself replaced the head of the Peabody Museum Brontosaurus with a cast of the Carnegie skull. AMNH, the Field Museum, and the Carnegie Museum followed suit before the decade was out.

aess

Remounted Apatosaurus at the Carnegie Museum. Photo by the author.

Given the small size of the historic community of dinosaur specialists, it may have been particularly vulnerable to the influences of a few charismatic individuals. To wit, Marsh’s speculative Brontosaurus skull was widely accepted despite a lack of compelling evidence, and Osborn was apparently able to bully Holland out of publishing a find that contradicted the mount at AMNH. What’s more, the legend of the mismatched Brontosaurus skull somehow became distorted by the idea that either Marsh or Osborn had accidentally given their reconstructions the head of Camarasaurus. This is marginally true at best, since both men actually oversaw the creation of composite reconstructions which only passingly resembled Camarasaurus. Nevertheless, the idea that the skull of Camarasaurus was a passable substitute for that of Apatosaurus was apparently well-established by the 1930s, when Carnegie staff hybridized the two sauropods for the first time. Even today, there are numerous conflicting versions of this story, and it is difficult to sort out which details are historically accurate and which are merely assumed.

I’d like to close by pointing out that while the head-swap story is often recounted as a scientific gaffe, it is really an example of science working as it should. Although it took a few decades, the mistakes of the past were overcome by sound evidence. Despite powerful social and political influences, evidence and reason eventually won out, demonstrating the self-corrective power of the scientific process.

References

Berman, D.S. and McIntosh, J.S. 1975. Description of the Palate and Lower Jaw of the Sauropod Dinosaur Diplodocus with Remarks on the Nature of the Skull of ApatosaurusJournal of Paleontology 49:1:187-199.

Brinkman, P. 2006. Bully for Apatosaurus. Endeavour 30:4:126-130.

Gould, S.J. 1991. Bully for Brontosaurus: Reflections in Natural History. New York, NY: W.W. Norton and Company.

Osborn, H.F. 1905. Skull and Skeleton of the Sauropodous Dinosaurs, Morosaurus and BrontosaurusScience 22:560:374-376.

Parsons, K.M. 1997. The Wrongheaded Dinosaur. Carnegie Magazine. November/December:38.

Tschopp, E., Mateus, O., and Benson, R.B.J. 2015. A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ 3:e857. https://doi.org/10.7717/peerj.857

6 Comments

Filed under AMNH, CMNH, dinosaurs, field work, FMNH, fossil mounts, history of science, museums, reptiles, sauropods, systematics

Exhibit Review: Kenosha Dinosaur Museum

Stan and an eagle.

Stan the Tyrannosaurus with a modern eagle. Photo by the author.

Last week, I had a chance to visit the Dinosaur Discovery Museum in Kenosha, Wisconsin. I had no idea this place existed until recently, but it’s a short drive north from the Chicago area, and has apparently been open since 2006. The Museum is a joint venture between the municipally funded Kenosha Public Museum system and Carthage College, and is housed in a lovely 1930s post office (on the National Register of Historic Places). As I understand it, the Dinosaur Discovery Museum was initially imagined as a space to host the undergraduate paleontology program at the College, which is led by Dr. Thomas Carr. While the Museum does include a working fossil prep lab and displays of recent finds from Carr’s field expeditions in Montana and South Dakota, the primary draw for most visitors is the permanent exhibit hall. Although less than 100 feet across, this space is packed with more theropod mounts than I have ever seen in one place.

Nary an ornithiscian in sight. Photo by the author.

Nary an ornithiscian in sight. Photo by the author.

Naturally, the theme of this theropod-centric exhibit is bird evolution. Circling the central pedestal counter-clockwise, visitors can see the radiation of theropods from primitive forms like Herrerasaurus to larger ceratosaurs and tetanurans and finally to increasingly bird-like coelurosaurs. The Dinosaur Discovery Museum must have gotten a very generous initial donation, because they seem to have bought out virtually the entire catalog of casts from both the Black Hills Institute and Triebold Paleontology.

Hererrasaurus

A squatting Hererrasaurus is one of many unusually posed mounts at the Dinosaur Discovery Museum. Photo by the author.

Many of the casts were familiar to me, including the ubiquitous Stan, the Acrocanthosaurus from the North Carolina Museum of Natural Sciences, and the Anzu from the Carnegie Museum of Natural History. Nevertheless, it’s extremely cool to see such a complete range of theropod diversity in one place. I could directly compare any bone from a given mount to the same bone on any other, or even to the helpful selection of modern bird skeletons. The only thing that would make this exhibit more complete would be the inclusion of  growth series from the taxa for which this is known, like Tyrannosaurus and Allosaurus. And for the record, jaded paleophiles, T. rex looks really impressive alongside this menagerie. Overrated, my eye.

Torvosaurus scratches its jaw.

Torvosaurus scratches its jaw. Photo by the author.

Unlike some exhibits, the Dinosaur Discovery Museum does not shy away from the fact that all the skeletons on display are casts. Most of the mounts are very obviously painted in two colors, showing precisely which bones are based on real finds and which are sculpted reconstructions. Unfortunately, a handful of mounts inexplicably lack this information, which could confuse some visitors. One helpful side effect of displaying casts is that the dinosaurs can be placed in a variety of life-like poses. These theropods are not all staring straight ahead with mouths agape – instead, we are treated to displays like the Torvosaurus above, which is scratching its head with its foot.

Ceratosaurus sign.

Signs like this accompany each dinosaur. Photo by the author.

The signage is of similarly high quality. Each dinosaur is accompanied by an attractive panel that provides expected information like the animal’s diet and time period, as well as a very helpful section identifying the quarry where the fossils were found and in most cases, the repository housing the original specimen. Additional signs on the walls cover the origin and extinction of dinosaurs, as well as the many lines of evidence that birds are surviving dinosaurs. Although they look a bit wordy at a distance, these signs are quite well-written for inclined to peruse them.

Acrocanthosaurus.

Acrocanthosaurus and an Allosaurus at rest. Photo by the author.

Also of note is a children’s room on the lower level, featuring (sigh) a sandbox dig and some very helpful and enthusiastic volunteers. Indeed, children’s activities appear to be the Dinosaur Discovery Museum’s strong suit. A look at their website reveals that kid’s programs are scheduled every weekend, and special events like dinosaur ornament making and flashlight tours occur throughout the year.

Clearly, I was impressed by my visit to the Dinosaur Discovery Museum. It’s wonderful that an educational opportunity like this exists in a semi-rural community, something that would have been unheard of not so long ago (did I mention it’s free?). What’s more, the exhibit hall is a great resource for specialists interested in comparing a variety of theropods first-hand. If you ever find yourself in the area, this little museum is definitely worth a visit.

1 Comment

Filed under dinosaurs, education, exhibits, fossil mounts, museums, reptiles, reviews, science communication, theropods

Museums and the Triceratops Posture Problem – Part 2

Triceratops at the National Museum of Natural History.

Triceratops “Hatcher” at the National Museum of Natural History. Photo by the author.

Back in July, I wrote about how the forelimb posture of ceratopsian dinosaurs like Triceratops has puzzled paleontologists for more than a century. Most quadrupedal dinosaurs held their front legs straight under their bodies, and it would make sense if Triceratops and its kin did the same. However, when researchers attempted to physically articulate skeletons for museum displays, they found that that the humerus would only fit properly with the scapula if it projected horizontally from the torso – like the sprawling limbs of a lizard. Over the years, new specimens, new research methods, and new technologies have all been used to help resolve this conundrum, but a consensus has not yet been reached. Of particular interest to me is the unusually central role mounted skeletons in museums have played in this biomechanical mystery. The previous post covered the historic Triceratops mounts; this entry will take a look at some more recent Triceratops displays in American museums.

The Hatcher Project

In 1998, a visitor looking at the Triceratops mount at the National Museum of Natural History happened to sneeze. To her alarm, the sneeze was enough to knock a small fragment of bone off the pelvis and onto the floor. The visitor thoughtfully informed security, and after a thorough conservation assessment by Kathy Hawks, it was determined that the 93-year-old mount needed to come off exhibit, and soon. The delicate fossils had served valiantly through 23 presidential administrations, but now it was time for the skeleton to be disassembled and preserved for posterity.

Retiring the classic Triceratops gave Ralph Chapman, head of the Museum’s Applied Morphometrics Laboratory, an opportunity to take on a project he had been germinating for some time. Chapman wanted to demonstrate the potential of 3-D scanning technology for paleontology research by creating a high-resolution digital duplicate of a dinosaur skeleton. Today, the process of making and studying digital copies of fossils is both widespread  and remarkably straightforward, but in the late 1990s it was practically science fiction. Nevertheless, the historic Triceratops was an ideal digitization candidate for several reasons. First, the digital assets would reduce handling of the delicate and aging original fossils. Second, exact copies of the scanned bones could be made from milled foam and plastics to create a replacement exhibit mount. Finally, a digital Triceratops would be a great opportunity to revisit the ceratopsid posture problem in a new way.

digital hatcher

A rendering of the digital Hatcher. Source

The ensuing Hatcher Project (the Triceratops was named in honor of John Bell Hatcher, who found the original fossils in the late 19th century) was a collaboration between Museum staff and several industry experts, including Lisa Federici of Scansite 3-D Services and Arthur Andersen of Virtual Surfaces, Inc. The first step was to place stickers on 100 key points on the Triceratops. These points were recorded with a surface scanner, so that the historic mount could be digitally recreated in its original pose. After that, fossil preparators Steve Jabo and Pete Kroehler carefully dismantled the skeleton. Each bone from the skeleton’s right side* was then scanned individually, producing 20 gigabytes of data (you’re supposed to gasp…again, this was the late 90s).

*Bones from the right side were mirrored to reproduce the left half of the skeleton. 

Since the original mount had been a somewhat disproportionate composite, the team made a few changes when building the new digital Hatcher. Some elements, including the undersized skull, were enlarged to match the rest of the skeleton. In addition, parts that had either been sculpted or were not actually Triceratops bones – such as the dorsal vertebrae and the hindfeet – were replaced with casts acquired from other museums. The result was the world’s first complete digital dinosaur, and shortly afterward, the first full-sized replica skeleton generated from digital assets.

Updated "Hatcher" mount's rarely seen right side. Source

Hatcher’s seldom seen right side was briefly exposed recently, before the mount was moved to a temporary second floor location. Source

In April 2000, the Hatcher team convened at NMNH to determine how the new replica mount would be posed. Chapman, Jabo, and Kroehler were joined by Kent Stevens of the University of Oregon, Brenda Chinnery of Johns Hopkins University, and Rolf Johnson of the Milwaukee Public Museum (among others) to spend a day working with a 1/6th scale model produced by stereolithography specialist Jason Dickman. The miniature Hatcher allowed the researchers to physically test the skeleton’s range of motion without the difficulty of manipulating heavy fossils.

The day was full of surprises. The team was impressed by the wide range of motion afforded by the ball and socket joint connecting the Triceratops skull to the atlas. They also found that the elbow joints could lock, which may have been helpful for shock absorption when the animal smashed things with its face. Nevertheless, when it came time to articulate the humerus and scapula, the team essentially validated Charles Gilmore’s original conclusion that sprawling forelimbs worked best (although the new Hatcher mount stands a little straighter than the historic version, and a lot straighter than the New York Triceratops). While other paleontologists had used indirect evidence (like evenly spaced trackways and wide nasal cavities for sucking down lots of oxygen) to support the idea that Triceratops was a straight-legged, fast-moving rhino analogue, articulating the actual bones showed once again that ceratopsid forelimbs had to sprawl.

Houston and Los Angeles Mounts

LACM Triceratops mount. Photo by Heinrich Mallison, many more here.

LACM Triceratops mount. Photo by Heinrich Mallison, many more here.

Hatcher is the Triceratops I am best acquainted with, and I can’t help but think of it as the definitive example of this animal. However, two new Triceratops mounts demonstrate a radically different take on ceratopsid posture. In 2011, the Natural History Museum of Los Angeles County completed a thoroughly renovated dinosaur hall, which features a brand-new Triceratops mount at its entrance. Like Hatcher, this skeleton is a composite of several specimens, in this case excavated in Montana by LACM teams between 2002 and 2004. Phil Fraley Productions, the exhibit fabrication company behind Sue and the Carnegie Museum dinosaurs, was responsible for mounting the fossils. The primary specimen (LACM 141459, which provided the skull and right forelimb) is notable because it included a completely intact and articulated front leg. Although the analysis of this important find has yet to be published, exhibit curator Luis Chiappe tellingly chose an erect, rather than sprawling, forelimb posture.

Meanwhile, the Houston Museum of Nature and Science opened its colossal, 30,000 square foot Hall of Paleontology in 2012. Among the dozens of mounted skeletons on display is Lane, reportedly the most complete Triceratops ever found. The museum purchased the skeleton from the Black Hills Institute, and the company also constructed the display mount. Robert Bakker, who curates the Hall of Paleontology, specifically requested that Lane be given a straight-legged, trotting pose. With two legs off the ground, this display emanates strength and speed.

"Lane" at Houston Museum

“Lane” at Houston Museum of Nature and Science. Source

So how did the Los Angeles and Houston exhibit teams manage to construct plausible-looking, straight-legged Triceratops mounts? Since full descriptions of either specimen have not been published, it’s hard to say for sure. From the look of it, however, the new mounts both have narrower, flatter rib cages (as suggested by Paul and Christiansen), which allows more room for the elbow. Likewise, the shoulder girdles are lower than Hatcher’s, and they seem to have been rotated closer to the front of the chest. Also note that the forelimbs of the Los Angeles and Houston mounts are not completely erect – they are strongly flexed at the elbow, as is typical of many quadrupedal mammals.

These new mounts don’t mean the Triceratops posture problem is resolved, though. The angle of the ribs and the position of the scapula are apparently both touchy subjects, so alternate interpretations are sure to arise in the future. After all, Triceratops forelimb posture isn’t just an esoteric bit of anatomical trivia: it has major implications for the speed and athleticism of an extremely successful keystone herbivore. Understanding the limitations on this animal’s movement and behavior can contribute to our understanding of the ecosystem and environmental pressures in late Cretaceous North America. As such, I am eagerly awaiting the next round in this 100-plus year investigation.

A big thank you to Rebecca Hunt-Foster and Ralph Chapman for sharing their time and expertise while I was writing this post!

References

Chapman, R. Personal communication.

Chapman, R., Andersen, A., Breithaupt, B.H. and Matthews, N.A. 2012. Technology and the Study of Dinosaurs. The Complete Dinosaur, 2nd Edition. Bloomington, IN: Indiana University Press.

Fujiwara, S. and Hutchinson, J.R. 2012. Elbow Joint Adductor Movement Arm as an Indicator of Forelimb Posture in Extinct Quadrupedal Tetrapods. Proceedings of the Royal Society 279: 2561-2570.

Hunt-Foster, R. Personal communication.

Paul, G.S. and Christiansen, P. 2000. Forelimb Posture in Neoceratopsian Dinosaurs: Implications for Gait and Locomotion. Paleobiology 26:3:450-465.

12 Comments

Filed under anatomy, dinosaurs, fossil mounts, history of science, marginocephalians, museums, NMNH, reptiles

The Diplodocus seen ’round the world

1st cast in spot of honor

The first cast of the Carnegie Diplodocus holds court at London’s Natural History Museum. Source

The story of Andrew Carnegie’s Diplodocus will surely be well known to most readers. As the legend goes, Carnegie the millionaire philanthropist saw a cartoon in the November 1898 New York Journal depicting a sauropod dinosaur peering into the window of a skyscraper. He immediately contacted the paleontology department at the newly established Carnegie Museum of Natural History in Pittsburgh, and offered ample funding to find a sauropod skeleton for display. So began a frantic competition among the United States’ large urban museums to be the first to collect and mount a sauropod—the bigger the better.

The American Museum of Natural History was first across the finish line, unveiling their composite Apatosaurus in February of 1905. By that time, the Carnegie team had already found a sauropod skeleton of their own—a Diplodocus—near Medicine Bow, Wyoming. Unfortunately, they had nowhere to display it, as the Carnegie Museum building was still far from finished. Unwilling to be bested by his New York competition, Andrew Carnegie offered his chum King Edward VII a complete plaster replica of the Diplodocus, and hired a team of modelmakers to help make it happen. The arrival of the facsimile Diplodocus at the British Museum (now the Natural History Museum) in London was celebrated with a white tie event presided over by Carnegie and Baron Avebury, who spoke on behalf of the king. The London Diplodocus was on display two months after the AMNH Apatosaurus, and the original skeleton was unveiled in Pittsburgh in 1907.

diplodocus_nocopyright

In March 1905, a classy shindig celebrated the arrival of the first replica Diplodocus in London.

That’s usually where the Diplodocus story ends, with a footnote that nine more Diplodocus replicas were later manufactured and presented to heads of state throughout Europe and Latin America. I’d like to explore those subsequent displays in more detail. The Carnegie Diplodocus was the first mass-produced dinosaur, and by 1932 it appeared in no less than ten virtually identical displays across three continents. Taylor characterizes Carnegie’s sauropod as “the single most viewed skeleton of any animal in the world”, and its scientific, social, and even political ramifications are both wide-reaching and fascinating.

Building a Sauropod

The original CMNH Diplodocus mount, in the hall built specifically to accomodate it. Source

The real CM 84 has been displayed in Pittsburgh since 1907. Source

The Diplodocus in question is specimen CM 84, recovered in 1899 in Albany County, Wyoming. The skeleton was about 60% intact and remains one of the most complete sauropod specimens ever found. The ubiquitous John Bell Hatcher described the fossils in 1901, coining the new species Diplodocus carnegiei after the project’s benefactor. Arthur Coggeshall of the Carnegie Museum was primarily responsible for preparing and casting the fossils. He was initially supervised by Hatcher, but William Holland took over when Hatcher died in 1904. Holland deferred to Hatcher’s judgement in most cases, although he was not shy about voicing his disagreement. For example, Hatcher had reconstructed the Diplodocus forefeet with slightly elevated digits, but Holland (incorrectly) thought they should be flat and splayed.

As is typical of dinosaur mounts, the incomplete primary specimen was supplemented with other fossils to produce a full skeleton. The skull, for instance, was a cast of USNM 2673, a specimen on display at the Smithsonian. A number of missing bones, including most elements of the forelimbs, were sculpted using a smaller Diplodocus specimen for reference. Although it took longer to produce than the AMNH Apatosaurus, contemporary paleontologists generally agreed that Carnegie’s Diplodocus was the superior sauropod mount. Not only was its pose more natural and lifelike, but the underlying steel armature was cleverly hidden. It’s difficult to overstate the challenges of assembling a mounted skeleton on this scale, and in its day the Diplodocus was the best in the world.

Roll Call

dip_mexico

The Chopo University Museum in Mexico City received the 9th Diplodocus cast in 1929. Source

As mentioned, the first replica Diplodocus was unveiled in London in 1905, and the original fossils were ready for display in 1907. French and German dignitaries were present at an event in Pittsburgh celebrating its completion, and Andrew Carnegie promised both countries Diplodocus casts of their own. Once again, Coggeshall and Holland led the creation of the new mounts, a task they would repeat many times in the years to come. Playing precisely to cartoonish national stereotypes, the Germans provided a detailed plan and ambitious schedule for the project, while the French acted coy, then threw a lavish party when the mount was ready. Diplodocus replicas were on display at the National Natural History Museum in Paris and the Humboldt Museum in Berlin before the end of 1908, but the Pittsburgh team already had orders for a new batch of mounts. By early 1910, three new Diplodocus were on exhibit at the Museum for Paleontology and Geology in Bologna, Italy, the Natural History Museum in Vienna, Austria, and the Zoological Museum in St. Petersburg, Russia. The La Plata Museum in Buenos Aires, Argentina and the National Museum of Natural Science in Madrid, Spain received their Diplodocus mounts in 1912 and 1913, respectively, bringing the total number of replicas up to eight by the onset of World War I.

The war put a damper on this friendly exchange of dinosaurs, and Carnegie’s death in 1919 brought the Diplodocus diaspora to a temporary end. However, in 1929 Louise Carnegie, wife of Andrew, commissioned an additional cast as a gift for Alfonso Herrera of the Chopo University Museum in Mexico City. Herrera originally asked for a bronze cast for outdoor display, but when this proved prohibitively expensive, a plaster version was produced instead. In 1932, the Carnegie Museum traded a Diplodocus replica for a collection of German fossils from the Paleontological Museum in Munich. This copy has never been mounted or displayed. The last Diplodocus cast from the original molds was forged in 1957. Made from concrete, this mount was displayed outdoors for many years at the Utah Field House Museum in Vernal, Utah.

goofy vernal field house concrete cast

The 11th and final facsimile Diplodocus made from the original molds was this concrete version, on exhibit in Vernal, Utah for many years.

Most of the historic Diplodocus mounts remain on display today. The London Diplodocus was taken off exhibit during World War II, but in 1979 it was given a position of honor in the museum’s entrance hall. Later, it was completely restored and remounted with its tail held aloft. The Berlin, Buenos Aires, and Bologna Diplodocus mounts have also been upgraded with modern poses, but the others retain their historic, tail-dragging posture, looking exactly as they did a century ago. The St. Petersburg mount was circulated among a number of Russian museums, and may have been destroyed in an effort to make new molds from the bones (Edit: The Russian mount is still on display at the Orlov Museum for Paleontology—see comments). The concrete Diplodocus in Vernal has likewise been retired, but it was used to create two new casted skeletons, now on display in Utah and Nevada.

Opportunities for Science

St. Petersburg

The weird bow-legged Diplodocus in St. Petersburg looks more like the original USNM Triceratops than Tornier’s take on the sauropod.  Source

The sudden availability of identical Diplodocus skeletons presented an unusual opportunity for international scientists, allowing researchers based thousands of miles apart to study and compare notes on the same bones. Perhaps inevitably, a few European scientists were not happy with Holland and Coggeshall’s take on the sauropod. The best-known dissenter was Gustav Tornier, who rejected the straight-limbed reconstruction of Diplodocus, arguing instead that the sauropod sprawled like a crocodile. The German scientist provided an illustration of this alternate stance, in which the poor dinosaur’s arms appear to project from the base of its neck. Holland responded with a particularly harsh rebuttal (backed by several European scientists), and Tornier declined to push the issue further in print.

Dinosaurs for everyone

La plata

Diplodocus cast number seven at the La Plata Museum in Buenos Aires. Source

The most lasting influence of the Carnegie Diplodocus is certainly it’s cultural impact. If any one specimen can be credited with inspiring the global popularity of dinosaurs, it was this one. Thanks to Carnegie, citizens of 11 different nations had their first opportunity to stand in the presence of a giant dinosaur, and to experience the scale and splendor of a creature that completely dwarfed any modern land animal. In every nation where a new Diplodocus was installed, the local press adored the creature, never failing to point out its tiny head and presumed stupidity. Diplodocus was an endearing oaf, and for a time, its name was synonymous with dinosaurs and prehistory in general.

What was the significance of Diplodocus to all these people? It’s difficult not to think of it as a vanity project for Andrew Carnegie*, an opportunity to rub shoulders with European royalty and flaunt his wealth and generosity. One might also consider the Diplodocus an expression of America’s economic and technological might, or perhaps a harbinger of the United States’ role in globalization and mass production. French writer Octave Mirbeau seemed to be thinking along those lines when he lamented the mighty dinosaur being reduced to a crass, populist display. According to Carnegie himself, however, the goal was nothing less than world peace: he wanted to bring people together over their shared enthusiasm for the dinosaur. Too bad World War I came along and ruined the sauropod love-in.

*If the accolades went to anyone’s head, it was Holland’s. During his world tour assembling sauropod mounts, he was given countless awards, including the French Legion of Honor and German Knight’s Cross. Holland carefully added each new medal to his portrait at the Carnegie Museum.
Original Diplodocus

The original Diplodocus skeleton was remounted at the Carnegie Museum in 2007. Photo by the author.

On both sides of the Atlantic, Diplodocus was a shared point of reference and a beloved symbol. Most commonly, Diplodocus was the butt of a joke: from politicians to athletes to heavy machinery, anything big, slow, and not especially bright was likened to the dinosaur. My favorite anecdote on the subject comes from Nieuwland: during World War I, soldiers from different nations with different languages had the word “Diplodocus” in common, and used it to describe the heavy, plodding tanks.

Today, we think of Diplodocus and it’s ilk very differently. Sauropods weren’t ungainly dolts—they were surprisingly nimble and extremely successful megaherbivores, unchallenged in their dominance for 140 million years. Still, it’s difficult to think of single fossil that has matched the global cultural impact of CM 84. There are far more copies of Stan the T. rex on display, and Sue is widely known by name, but really, the only contender that even comes close is Archaeopteryx. With eleven versions still on display, Carnegie’s legendary Diplodocus lives on.

References

Brinkman, P.D. 2010. The Second Jurassic Dinosaur Rush: Museums and Paleontology in America at the Turn of the 20th Century. Chicago, IL: University of Chicago Press.

Holland, W.J. 1906. The osteology of Diplodocus Marsh with special reference to the restoration of the skeleton of Diplodocus carnegiei Hatcher, presented by Mr. Andrew Carnegie to the British Museum, May 12, 1905. Memoirs of the Carnegie Museum. Vol. 2, No. 6, 225-278.

Nieuwland, I. 2010. The colossal stranger: Andrew Carnegie and Diplodocus intrude European Culture, 1904-1912. Endeavour. Vol 34, No. 2.

Taylor, M.P. 2010. Sauropod dinosaur research: a historical review. Geological Society, London, Special Publications. Vol. 343, pp. 361-386.

16 Comments

Filed under CMNH, dinosaurs, fossil mounts, history of science, museums, reptiles, sauropods

Museums and the Triceratops Posture Problem – Part 1

The Triceratops in the Hall of Extinct Monsters, circa 1911. Photo from NMNH on flickr.

The world’s first Triceratops mount at the United States National Museum, built in 1905. Photo courtesy of the Smithsonian Institution Archives.

We know more about dinosaurs today than previous generations of researchers would have ever thought possible. Who would have guessed that in the 21st century, we would have direct evidence for the color of some species, or a detailed understanding of the life history and ontogeny of others? Modern paleontologists can delve deeper into the biology and ecology of extinct animals than ever before, so it comes as a surprise when a very basic question about dinosaur physiology has gone without a definitive answer for well over a century.

For 125 years, paleontogists have struggled to understand how large ceratopsids like Triceratops held their forelimbs. Usually, someone with a good understanding of anatomy can assemble a tetrapod skeleton without much difficulty. Vertebrates are all built along the same basic body plan, and bones fit together in the same general way. However, the forelimb bones of Triceratops and its relatives are quite perplexing. The head of the humerus, which articulates with the scapula, is off-center and extends backward from the shaft. Meanwhile, the lesser tubercle, a tiny nubbin on a human humerus, is enormous and boxy. Taken together, these two traits make it so that if Triceratops held its arm erect and under its body, like most dinosaurs did, the humerus would either puncture the rib cage or be completely dislocated from the shoulder. The simplest way to solve this is to orient the humerus so that the arms project at right angles from the torso, like the sprawling limbs of a lizard. But this just looks wrong. First, ceratopsid hindlimbs are plainly meant to stand straight up. Sprawling forelimbs make Triceratops look mismatched, like the front end a tortoise sewn was to the back end of a rhino. Second, and perhaps more importantly, a sprawling posture would drastically inhibit speed and maneuverability in what is otherwise a very powerfully-built animal. The posture of Triceratops and its kin would ultimately have had a dramatic impact on the animal’s behavior, lifestyle, and ecological role.

Paleontologists haven’t spent the last century just scratching their heads over this problem. Ceratopsid forelimbs have inspired a considerable amount of research over the years, as scientists continue to develop new methods and new tools to explore the biomechanics of prehistoric animals. New technologies have been developed and refined specifically to help determine how Triceratops and its relatives walked and stood. Nevertheless, my intent with this post is not to thoroughly recount the history of ceratopsid forelimb research (if you’re interested, most of the articles referenced below are freely available online). Instead, I’d like to explore the central role museum displays have played in this debate. An artist drawing a two-dimensional image of Triceratops can fudge the orientation of the limbs (and many have), but the team building a mounted skeleton needs to know exactly how to articulate the bones. The ceratopsid posture question first arose in the process of building a mounted Triceratops skeleton for display, and museum mounts continue to be referenced by researchers looking to “ground truth” their ideas. While museum mounts usually exist primarily for education and display, in the case of the ceratopsid forelimb question these exhibits have long been central to the process of studying fossil evidence and creating knowledge.

Early Reconstructions

Marsh's 1891 restoration of Triceratops.

Marsh’s 1888 restoration of Triceratops.

O.C. Marsh published the first illustrated reconstruction of a Triceratops skeleton in 1888. Marsh was legendary in his attention to detail, and the restoration holds up reasonably well today – better, in fact, than his illustrations of Stegosaurus and “Brontosaurus.” Contemporary scientists had no complaints, even though Marsh had given the Triceratops vertical forelimbs. Other dinosaurs had erect limbs, as does the superficially similar modern rhino, so why shouldn’t Triceratops? Marsh’s reconstruction was brought to three-dimensional life in 1901, when the Smithsonian Institution commissioned a life-sized papier mache replica of a Triceratops skeleton for the Pan-American Exposition in Buffalo. Since the model was hand-sculpted, not casted from original fossils, artist F.A. Lucas had no trouble making Triceratops stand up straight, exactly as portrayed by Marsh. The model appeared again at a Smithsonian exhibit in St. Louis, but was apparently lost or destroyed shortly afterwards. In its place, newly hired United States National Museum preparator Charles Gilmore began work on a mounted Triceratops skeleton composed of original fossils.

St. Louis Expo

Straight-legged Triceratops model at the Pan American Expo in St. Louis. Source

Gilmore’s 1905 Triceratops mount was the first real skeleton of a ceratopsid ever assembled for display (first image). Like virtually all dinosaur mounts of the era, the skeleton was a composite of several specimens and a few sculpted pieces. All the Triceratops fossils at Gilmore’s disposal were collected by John Bell Hatcher in the late 19th century, and inherited by the Smithsonian as part of the Marsh collection. USNM 4842, a partial skeleton consisting mostly of a torso and pelvis, formed the basis for the mount, but at least six other individuals were also incorporated. Gilmore selected the skull because it was more complete and less distorted than the other Triceratops skulls available, but it was also on the small side compared to the body. Likewise, the left humerus was about 40% smaller than the right, and conspicuously three-toed Edmontosaurus hindfeet were used (no Triceratops feet had been found at the time). In the process of building his Triceratops, Gilmore had to make several changes to the idealized Triceratops envisioned by Marsh, most notably the orientation of the forelimbs. Not only was it apparently impossible to articulate the humerus in an upright position, but as Gilmore explained it, “a straightened form of leg would so elevate the anterior portion of the body as to have made it a physical impossibility for the animal to reach the ground with its head.”

The American Museum of Natural History produced their own Triceratops mount in 1923. Like its USNM predecessor, the AMNH Triceratops was a composite of several specimens. AMNH 5033, discovered by Barnum Brown in Montana and consisting of most of the dorsal vertebral column, ribs, and pelvic girdle, made up the largest portion of the mount. The skull was recovered by Charles Sternberg in Wyoming, and many of the appendicular bones were sculpted or cast from Smithsonian specimens. Preparator Charles Lang spent over 263 working days on the project, and much of that time was reportedly spent puzzling over the forelimbs. Lang studied living and preserved specimens of a variety of tetrapods, including rhinos, lizards, crocodiles, and tortoises, trying to find a living analogue for the strangely shaped ceratopsid bones. He ended up articulating the forelimbs so that they were even more widely splayed than Gilmore’s reconstruction, to the point that the back of the Triceratops slopes dramatically forward, and the head is almost dragging along the ground. In an accompanying paper, Henry Osborn asserted that “nothing short of a horizontal humerus and completely everted elbow would permit proper articulation of the facets.” By way of explanation, Osborn offered that this posture might have been helpful in withstanding a frontal impact.

triceratops

American Museum of Natural History Triceratops mount, circa 1959. Photo courtesy of the AMNH Research Library.

Together, the Washington and New York Triceratops mounts, with their mismatched tortoise-in-the-front, rhino-in-the-back posture, would come to define both popular and scientific conceptions of ceratopsids for the better part of a century. Other museums followed Gilmore and Lang’s lead and built sprawling ceratopsids of their own, including Richard Lull’s 1929 Centrosaurus at the Peabody Museum of Natural History and Kenneth Carpenter’s 1986 Chasmosaurus at the Academy of Natural Sciences. Even as recently as 1995, AMNH curators chose not to change a single bone on the historic Triceratops mount while modernizing their exhibit.

Voices of Dissent

Robert Bakker was one of the first to challenge the ceratopsid forelimb orthodoxy. In 1986, Bakker criticized Gilmore and Lull’s museum mounts and resurrected Marsh’s original interpretation of a straight-legged Triceratops. His reasoning was that the ceratopsid glenoid fossa (the concavity on the scapula that holds the head of the humerus) was more like the narrow cup of a horse or rhino than the wide trough of a lizard. Bakker went as far as to suggest that Triceratops and its kin might have been able to run or even gallop. Gregory Paul and others piled on, arguing that earlier researchers had run into trouble articulating Triceratops forelimbs because they had made the ribcage too broad. If the ribs were articulated so that the animal had flat flanks, the elbow apparently wouldn’t get in the way. Additional evidence for an upright stance came from a set of ceratopsid trackways described by Martin Lockley and Adrian Hunt. The trackways showed forefeet in line with the hindfeet, suggesting that front and back legs were not mismatched, after all.

This cast of the AMNH Triceratops at the Field Museum replicates the sprawling posture. Photo by the author.

This cast of the AMNH Triceratops at the Field Museum replicates the sprawling posture of the original. Photo by the author.

However, paleontologists like Peter Dodson were unmoved by these new arguments. Dodson proposed that the trackways had been misinterpreted: since ceratopsids are wider at the hips than at the shoulders, evenly spaced front and back prints should imply that the animal was holding its forelimbs out farther than its hindlimbs. Dodson was concerned that the rhino analogy was being taken too far: Triceratops looked like a rhino, so reasearchers were trying their hardest to make it move and behave like a rhino.

As Kenneth Carpenter explained in a comment last year, dinosaurs can do anything on paper, but physically assembling a skeleton forces you to confront the reality of what the bones can and cannot do. In the last decade, two new Triceratops mounts provided paleontologists the opportunity to re-explore this process, with more complete specimens and modern technology at their disposal. Next time, we’ll take a look at what the new Triceratops displays at the National Museum of Natural History and the Los Angeles County Natural History Museum can tell us about ceratopsid posture and lifestyle.

References

Bakker, R.T. 1986. The Dinosaur Heresies: New Theories Unlocking the Mystery of Dinosaurs and Their Extinction. New York, NY: Citadel Press.

Dodson, P. 1996. The Horned Dinosaurs: A Natural History. Princeton, NJ: Princeton University Press.

Fujiwara, S. 2009. A Reevaluation of the Manus Structure in Triceratops (Ceratopsia: Ceratopsidae). Journal of Vertebrate Paleontology 29:4:1136-1147.

Fujiwara, S. and Hutchinson, J.R. 2012. Elbow Joint Adductor Movement Arm as an Indicator of Forelimb Posture in Extinct Quadrupedal Tetrapods. Proceedings of the Royal Society 279: 2561-2570.

Gilmore C.W. 1905.The Mounted Skeleton of Triceratops prorsus. Proceedings of the U.S. National Museum 29:1426:433-435.

Makovicky, P. 2012. Marginocephalia. The Complete Dinosaur, 2nd Edition. Eds. Brett-Surman, M.K., Holtz, T.R. and Farlow, J.O. Bloomington, IN: Indiana University Press.

Osborn, H.F. 1933. Mounted Skeleton of Triceratops elatus. American Museum Novitates 654:1-14.

Paul, G.S. and Christiansen, P. 2000. Forelimb Posture in Neoceratopsian Dinosaurs: Implications for Gait and Locomotion. Paleobiology 26:3:450-465.

2 Comments

Filed under AMNH, anatomy, dinosaurs, fossil mounts, history of science, marginocephalians, museums, NMNH, reptiles

Extinct Monsters Updated

artists conception

This early artist’s conception of the new NMNH fossil hall was on display on closing day.

Way back in 2012, I wrote a series of posts on the history of fossil displays at the National Museum of Natural History. Now that the old exhibit is closed for five years of renovation, it seemed like a good idea to go back and revise the old articles. That, and it can be very painful to read things I wrote over a year ago. Each of the seven posts, plus the launch page, have been substantially updated with new information, new images, and less abuse of the passive voice. You can check out the new articles via the Extinct Monsters link at the top of the page, or by clicking here.

Leave a comment

Filed under dinosaurs, exhibits, Extinct Monsters, fossil mounts, mammals, museums, NMNH, reptiles

Displaying the Tyrant King – Part 3

Subtlety is unnessesary when T. rex is involved.

Who needs subtlety when you have a T. rex?

Start with Displaying the Tyrant King Part 1 and Part 2.

Tyrannosaurus rex displays changed for good in the 1990s thanks to two individuals, one real and one fictional. The latter was of course the T. rex from the film Jurassic Park, brought to life with a full-sized hydraulic puppet, game-changing computer animation, and the inspired use of a baby elephant’s screeching cry for the dinosaur’s roar. The film made T. rex real – a breathing, snorting, drooling animal unlike anything audiences had ever seen. Jurassic Park was a tough act to follow, and in one way or another, every subsequent museum display of the tyrant king has had to contend with the shadow cast by the film’s iconic star.

The other dinosaur of the decade was Sue, who scarcely requires introduction. First and foremost, Sue is the most complete Tyrannosaurus ever found, with 80% of the skeleton intact. Approximately 28 years old at the time of her death, Sue is also the eldest T. rex known, as well as one of the largest. The specimen’s completeness and exquisite preservation has allowed paleontologists to ascertain an unprecedented amount of information about the lifestyle of meat-eating dinosaurs. In particular, Sue’s skeleton is riddled with fractured and arthritic bones, as well as evidence of gout and parasitic infection that together paint a dramatic picture of the rough-and-tumble world of the late Cretaceous.

From South Dakota to Chicago

Sue at Disney World

Cast of Sue at Walt Disney World, Orlando. Source

It was the events of Sue’s second life, however, that made her the fossil the world knows by name. Sue was discovered in the late summer of 1990 by avocational fossil hunter Susan Hendrickson (for whom the specimen is named) on the Cheyenne River reservation in South Dakota. Peter Larson of the Black Hills Institute, a commercial outfit that specializes in excavating, preparing, and exhibiting fossils, initially intended to display the Tyrannosaurus at a new facility in Hill City, but soon became embroiled in an ugly four-way legal battle with landowner Maurice Williams, the Cheyenne council, and the United States Department of the Interior. With little precedent for ownership disputes over fossils, it took until 1995 for the District Court to award Williams the skeleton. Williams soon announced that he would put Sue on the auction block, and paleontologists initially worried that the priceless specimen would disappear into the hands of a wealthy collector, or end up in a crass display at a Las Vegas casino. Those fears were put to rest in 1997 when Chicago’s Field Museum of Natural History won Sue with financial backing from McDonald’s and Disney. Including the auctioneer’s commission, the price was an astounding $8.36 million.

FMNH and its corporate partners did not pay seven figures for Sue solely to learn about dinosaur pathology.  Sue’s remarkable completeness would be a boon to scientists, but her star power was at least as important for the Museum. Sue was a blockbuster attraction that would bring visitors in the door, and her name and likeness could be marketed for additional earned income. As FMNH President John McCarter explained, “we do dinosaurs…so that we can do fish” (quoted in Fiffer 2000). Particularly in the late 1990s, with Jurassic Park still fresh in people’s minds, a Tyrannosaurus would attract visitors and generate funds, which could in turn fund less sensational but equally important research, like ichthyology and entomology.

Still, some worried that McCarter, whose background was in business, not science, was exploiting an important specimen as a marketing gimmick at the expense of the Museum’s educational mission. This echoed similar concerns voiced 80 years earlier, when the original mounted Tyrannosaurus was introduced at the American Museum of Natural History. As president of AMNH, Henry Osborn oversaw the creation of grandiose and dramatic exhibits, with the intent to draw crowds and justify private and municipal financial support. When the Museum unveiled the Tyrannosaurus mount, Osborn held a lavish publicity gala for the New York elite and members of the press. The buzz generated by Osborn’s promotion resulted in lines around the block and front page headlines, but the attention was focused on the spectacle of the dinosaur rather than the science behind it. Many academics derided this as lowest common denominator pandering, while others, like anthropologist Franz Boas, grudgingly accepted that “it is a fond delusion of many museum officers that the attitude of the public is a more serious one, but the majority do not want anything beyond entertainment.”

Original skull of Sue the T. rex, displayed on the upper mezzanine. Photo by the author.

FMNH was under similar scrutiny as museum staff revealed their plans for Sue. The role of the corporate sponsors that paid for the fossils was a particular cause for concern, and the marketing team knew it. Although the idea of T. rex-themed Happy Meals was briefly on the table, McDonald’s and Disney wisely opted to present themselves only as patrons of science. McDonald’s got its name on the new fossil preparation lab at FMNH and Disney got a mounted cast of Sue to display at Walt Disney World, but the principal benefit to the two companies was high-profile exposure in association with youth science education. The Museum retained control over the message, highlighting Sue’s importance to paleontology and only coyly admitting her role as a promotional tool. Likewise, FMNH is the sole profiteer from the litany of shirts, hats, toys, mugs, and assorted trinkets bearing the Sue name and logo that are continually sold at the Museum and around Chicago.

You May Approach Her Majesty

Once Sue arrived at FMNH, the Museum did not hold back marketing the dinosaur as a must-see attraction. A pair of Sue’s teeth went on display days after the auction, which expanded organically into the “Sue Uncrated” exhibit, where visitors could watch the plaster-wrapped bones being unpacked and inventoried. Meanwhile, McDonald’s prepared an educational packet on Sue that was distributed to 60,000 elementary schools.

The main event, of course, was the mounted skeleton, which needed to be ready by the summer of 2000. This was an alarmingly short timetable, and the FMNH team had to hit the ground running. Much of Sue’s skeleton was still buried in rock and plaster. The bones needed to be prepared and stabilized before they could be studied, and they needed to be studied before they could be mounted. In addition, two complete Sue casts had to be fabricated: one for Disney World and one for a McDonald’s-sponsored traveling exhibit. The casts were produced by Research Casting International, the Toronto-based company that recently built the mounted menagerie for “Ultimate Dinosaurs“. Phil Fraley Productions, the same exhibit company that rebuilt the American Museum and Carnegie Museum T. rex mounts, was tapped to mount Sue’s original skeleton.

The mounted skeleton of Sue in the Stanley Field Hall. Photo by the author.

Unlike every other Tyrannosaurus mount before or since, Sue can hardly be called a composite. With the exception of a missing arm, left foot, a couple ribs, and small number of other odds and ends, the mounted Sue skeleton is composed of real fossils from a single individual. FMNH public relations latched onto this fact, emphasizing in press releases that while “many museums are displaying replicas of dinosaur skeletons, the Field Museum has strengthened its commitment to authenticity. This is Sue.” Just as they did with the AMNH Tyrannosaurus, Fraley’s team built an armature with individual brackets securing each bone, allowing them to be removed with relative ease for research and conservation. No bolts were drilled into the bones and no permanent glue was applied, ensuring that the fossils incur only minimal damage for the sake of the exhibit. Despite these improvements over historic mount-making techniques, however, the Sue mount does have some inexplicable anatomical errors. The coracoids should be almost touching in the middle of the chest, but the shoulder girdles are mounted so high on the rib cage that there is a substantial space between them. Consequently, the furcula (wishbone) is also positioned incorrectly.

After a private event not unlike the one held by Osborn in 1915, Sue was revealed to the public on May 17, 2000 with the literal raising of a curtain. A week-long series of celebrations and press junkets introduced Sue to Chicago, and she has been one of the city’s biggest attractions every since. All the publicity paid off, at least in the short term: FMNH attendance soared that year from 1.6 million to 2.4 million. 14 years later, Sue the Tyrannosaurus is still known by name, and is even used as the voice of FMNH on twitter. Interestingly, Sue’s new identity as a Chicago landmark seems to have all but eclipsed the legal dispute that was her original source of fame. A recent RedEye cover story goes so far as to proclaim this South Dakotan skeleton as “pure Chicago.”

 The Nation’s T. rex

This customized truck transported the Nation’s T. rex from Montana to Washington, DC.

This year, another Tyrannosaurus specimen has rocketed to Sue-like levels of notoriety. MOR 555, also known as “Wankel Rex”, is being transferred to the Smithsonian National Museum of Natural History, where it will eventually be mounted for long-term display. Now dubbed “the Nation’s T. rex“, the promotion of this specimen has mirrored that of Sue in many ways. Front-page media coverage, first-person tweets from the dinosaur and even an official song and dance contest herald the arrival of the fossils from their previous repository, the Museum of the Rockies in Montana. Much like the “Sue Uncrated” exhibit, the process of unpacking the unarticulated bones will soon be on view in a temporary display called “The Rex Room.” Meanwhile, the very name “Nation’s T. rex” is a provocative invented identity akin to Sue’s new status as a Chicagoan.

Nevertheless, the Nation’s T. rex does not quite live up to Sue’s mystique. This Tyrannosaurus is neither as large nor as complete as Sue, and there was no prolonged legal battle or frantic auction in its past. The 60% complete skeleton was found in 1988 by Montana rancher Kathy Wankel, on land owned by the US Army Corps of Engineers. The fossils are now on a 50 year loan from from the Corps to the Smithsonian, (presumably) a straightforward transfer between federal agencies. In addition, MOR 555 is by no means a new specimen. Several casts of the skeleton are already on display, including exhibits at the Royal Ontario Museum, the Museum of the Rockies, the Perot Museum of Nature and Science, and even the Google campus. In fact, a cast of the MOR 555 skull has been on display at NMNH for years.

NMNH Director Kirk Johnson, fossil hunter Kathy Wankel, her husband Bob Wankel, and Lt. Gen. Thomas Bostick preside over the arrival of the Nation’s T. rex at the Smithsonian. Source

With that in mind, the hype around the Nation’s T. rex might seem like much ado about nothing. As this series has demonstrated, the number of Tyrannosaurus skeletons on exhibit, whether original fossils or casts, has exploded in recent years. A quarter century ago, New York and Pittsburgh were the only places where the world’s most famous dinosaur could be seen in person. Today, there may well be over a hundred Tyrannosaurus mounts worldwide, most of which are identical casts of a handful of specimens. Acquiring and displaying a T. rex is neither risky nor ambitious for a natural history museum. No audience research or focus groups are needed to know that the tyrant king will be a hit. And yet, excessive duplication of a sure thing might eventually lead to monotony and over-saturation.

So far, such fears appear to be unfounded. A specimen like Sue or the Nation’s T. rex is ideal for museums because it is at once scientifically informative and irresistibly captivating. Museums do not need to choose between education and entertainment because a Tyrannosaurus skeleton effectively does both. And even as ever more lifelike dinosaurs grace film screens, museums are still the symbolic home of T. rex. The iconic image associated with Tyrannosaurus is that of a mounted skeleton in a grand museum hall, just as it was when the dinosaur was introduced to the world nearly a century ago. The tyrant king is an ambassador to science that unfailingly excites audiences about the natural world, and museums are lucky to have it.

The Nation’s T. rex in its final pose at the Research Casting International workshop.

This week, NMNH will be celebrating all things Tyrannosaurus, starting with a live webcast of arrival of the Nation’s T. rex on Tuesday morning. Stay tuned to this blog for further coverage of the events!

References

Asma, S.T. 2001. Stuffed Animals and Pickled Heads: The Culture and Evolution of Natural History Museums. New York, NY: Oxford University Press.

Boas, F. 1907. Some Principles of Museum Administration. Science 25:650:931-933.

Counts, C.M. 2009. Spectacular Design in Museum Exhibitions. Curator 52: 3: 273-289.

Fiffer, S. 2000. Tyrannosaurus Sue: The Extraordinary Saga of the Largest, Most Fought Over T. rex ever Found. New York, NY: W.H. Freeman and Company.

Larson, N. 2008. “One Hundred Years of Tyrannosaurus rex: The Skeletons.” Tyrannosaurus rex: The Tyrant King. Larson, Peter and Carpenter, Kenneth, eds. Bloomington, IN: Indiana University Press.

Lee, B.M. 2005. The Business of Dinosaurs: The Chicago Field Museum’s Nonprofit Enterprise. Unpublished thesis, George Washington University.

Rainger, R. 1991. An Agenda for Antiquity: Henry Fairfield Osborn and Vertebrate Paleontology at the American Museum of Natural History, 1980-1935. Tuscaloosa, AL: University of Alabama Press.

Switek, B. 2013. My Beloved Brontosaurus: On the Road with Old Bones, New Science and our Favorite Dinosaurs. New York, NY: Scientific American/Farrar, Straus and Giroux.

5 Comments

Filed under dinosaurs, FMNH, fossil mounts, history of science, movies, museums, NMNH, reptiles, science communication, theropods

Displaying the Tyrant King – Part 2

Old meets new

Old meets new: The classic Carnegie T. rex (CM 9380) is now paired with a cast of Peck’s Rex (MOR 980). Photo by the author.

Start with Displaying the Tyrant King – Part 1.

In 1915, the American Museum of Natural History unveiled the first mounted skeleton of Tyrannosaurus rex ever constructed. The Carnegie Museum of Natural History followed suit with their Tyrannosaurus mount in 1941, and for most of the 20th century New York and Pittsburgh were the only places in the world where the tyrant king could be seen in person. Nevertheless, these displays propelled Tyrannosaurus to universal stardom, and the instantly recognizable dinosaur appeared in countless books, films, and other media for years to come.

The omnipresence of T. rex was secured in part by two additional museum displays, ironically at institutions that did not have any actual Tyrannosaurus fossils on hand. The Field Museum of Natural History commissioned Charles Knight to paint a series of prehistoric landscapes in 1928, the most recognizable of which depicts a face-off between Triceratops and a surprisingly spry Tyrannosaurus. In 1947, Rudolph Zallinger painted a considerably more bloated and lethargic T. rex as part of his Age of Reptiles mural at the Peabody Museum of Natural History. Both paintings would be endlessly replicated for decades, and would go on to define the prehistoric predator in the public imagination.

Rex Renaissance

Despite enduring public enthusiasm, scientific interest in dinosaurs declined sharply in the mid-20th century, and new discoveries were few and far between. This changed rather suddenly with the onset of the “dinosaur renaissance” in the 1970s and 80s, which brought renewed energy to the discipline in the wake of evidence that dinosaurs had been energetic and socially sophisticated animals. The next generation of paleontologists endeavored to look at fossils in new ways to understand dinosaur behavior, biomechanics, ontogeny, and ecology. Tyrannosaurus was central to the new wave of research, and has been the subject of hundreds of scientific papers since 1980. More interest brought more fossil hunters into the American west, leading to an unprecedented expansion in known Tyrannosaurus fossils. Once considered vanishingly rare, Tyrannosaurus is now known from over 50 individual specimens across a wide range of ages and sizes. Extensive research on growth rate, cellular structure, sexual dimorphism, speed, and energetics, to name but a few topics, has turned T. rex into a veritable model organism among dinosaurs.

RTMP 81.6.1, aka Black Beauty, mounted in relief at the Royal Tyrell Museum. Source.

RTMP 81.6.1, aka Black Beauty, mounted in relief at the Royal Tyrell Museum. Source

The most celebrated Tyrannosaurus find from the early years of the dinosaur renaissance came from Alberta, making it the northernmost and westernmost T. rex to date. The 30% complete “Black Beauty” specimen, so named for the black luster of the fossilized bones, was found in 1980 by a high school student and was excavated by paleontologist Phil Curie. The original Black Beauty fossils were taken on a tour of Asia before finding a permanent home at the newly established Royal Tyrell Museum in Drumheller, Alberta. In lieu of a standing mount, Black Beauty was embedded in a faux sandstone facade, mirroring the environment in which the fossils were found and the animal’s presumed death pose. This relief mount set Black Beauty apart from its AMNH and CMNH predecessors, and even today it remains one of the most visually striking Tyrannosaurus displays.  Since the original specimen consisted of less than half of a skeleton, much of this display is made up of sculpted bones, including the pelvis, scapula, and most of the ribs. The mounted skull is a cast, but the real skull is displayed behind glass nearby. A complete cast of Black Beauty in a traditional free-standing mount is also on display at the Swedish Museum of Natural History in Stockholm.

The World’s Most Replicated Dinosaur

Driven by the increased public demand for dinosaurs, many museums without Tyrannosaurus fossils of their own have purchased complete casts from other institutions. In 1986, the Academy of Natural Sciences in Philadelphia opened “Discovering Dinosaurs”, the world’s first major exhibit showcasing active, endothermic dinosaurs. The centerpiece of the exhibit was a cast of the original AMNH Tyrannosaurus, posed for the first time in the horizontal posture that we now know was the animal’s habitual stance. The following year, another AMNH cast appeared in the lobby of Denver Museum of Nature and Science in a strikingly bizarre pose, with one leg kicking high in the air. The mount’s designer Robert Bakker intended to push boundaries and demonstrate what a dynamic and energetic Tyrannosaurus might be capable of, although the mount has subsequently been described as dancing, kicking a soccer ball, or peeing on a fire hydrant. Meanwhile, The Royal Tyrell Museum prepared a mount of RTMP.81.12.1 (a specimen consisting of a relatively small number of postcranial bones) that was filled in with AMNH casts, including the highly recognizable skull.

Cast

Tyrannosaurus cast at the Denver Museum of Nature and Science. Source

Since the late 1990s, however, casts of another specimen have overtaken AMNH 5027 for the title of most ubiquitous T. rex. BHI 3033, more commonly known as Stan, was excavated in South Dakota in 1992 by the Black Hills Institute, a for-profit outfit specializing in excavating, preparing, and mounting fossils. Stan is significant for being over two-thirds complete and for including the best-preserved Tyrannosaurus skull yet found. BHI has sold dozens of casts of the Stan skeleton to museums and other venues around the world. At a relatively affordable $100,000 plus shipping, even small local museums and the occasional wealthy individual can now own a Tyrannosaurus mount. With over 50 casts sold as of 2017, Stan is, by a wide margin, the most duplicated and most exhibited dinosaur in the world.

Stan the Tyrannosaurus at the National Museum of Natural History. Photo by the author.

Stan the Tyrannosaurus at the National Museum of Natural History. Photo by the author.

All these new Tyrannosaurus mounts are forcing museums to get creative, whether they are displaying casts or original fossils. Predator-prey pairings are a popular display choice: for example, the Houston Museum of Natural Science T. rex is positioned alongside an armored Denversaurus, and the Los Angeles Natural History Museum matches the tyrant dinosaur with its eternal enemy, Triceratops. Meanwhile, the growing number of juvenile Tyrannosaurus specimens has allowed for family group displays. A second T. rex exhibit at LACM features an adult, subadult and baby, while the Children’s Museum of Indianapolis pairs a Stan cast with the original skeleton of Bucky, a “teenage” T. rex. The most unique Tyrannosaurus mount so far is certainly the copulating pair at the Jurassic Museum of Asturias.

Tyrannosaurus versus Denversaurus at the Houston Museum of Nature and Science. Photo by the author.

Each of these displays gives a substantially different impression of Tyrannosaurus. Depending on the mount, visitors might see T. rex as a powerful brute, a fast and agile hunter, or a nurturing parent (or a gentle lover). Each mount is accurate insofar that a real Tyrannosaurus probably adopted a similar stance at some point, but the museum’s choice of pose nevertheless influences visitors’ understanding of and attitude toward the dinosaur.

Restoring the Classics

With dozens of new Tyrannosaurus mounts springing up across the country and around the world, the original AMNH and CMNH displays began to look increasingly obsolete. Unfortunately, modernizing historic fossil mounts is an extremely complex and expensive process. The early 20th century technicians that built these displays generally intended for them to be permanent: bolts were drilled directly into the bones and gaps were sealed with plaster that can only be removed by manually chipping it away. What’s more, the cumulative effects of rusting armatures, fluctuating humidity, and vibration from passing crowds have considerably damaged historic mounts over the course of their decades on display.

AMNH 5027 was restored and remounted in 1995.

AMNH 5027 was restored and remounted in 1995. Photo by the author.

Despite these challenges, AMNH and CMNH have both been able to restore and update their classic Tyrannosaurus displays. While fossil mounts used to be built in-house, often by the same people who found and described those fossils, modern mounting projects are typically outsourced to specialist companies. Phil Fraley Productions, an exhibit fabrication company based in the Pittsburgh suburbs, was responsible for both T. rex restorations. At AMNH, Jeanne Kelly spent two years disarticulating and conserving each bone before Phil Fraley’s crew took over to build the new armature. The new mount not only corrected the dinosaur’s posture, but improved visitors’ view of the fossils by removing obstructive vertical supports. Instead, most of the skeleton’s weight is now supported by steel cables hanging from the ceiling.  Each bone is secured to an individual metal bracket, allowing researchers to easily remove elements for study as necessary. A new cast of the skull was also prepared, this time with open fenestrae for a more natural appearance. Rather than attempting to match the dramatic and showy T. rex mounts at other museums, the AMNH team chose a comparatively subdued stalking pose. A closed mouth and subtly raised left foot convey a quiet dignity befitting this historically significant display.

Historically, the 1941 CMNH Tyrannosaurus had never quite lived up to its New York predecessor. Although it incorporated the Tyrannosaurus type specimen, it was mostly composed of casts from the New York skeleton, and it sported an unfortunately crude replica skull. It is therefore ironic that CMNH now exhibits the more spectacular T. rex display, one which finally realizes Osborn’s ambitious plan to construct an epic confrontation between two of the giant predators. As they had with the AMNH mount, Phil Fraley’s team dismantled the original display and painstakingly removed many layers of paint, shellac, and plaster from the bones. Michael Holland contributed a new restored skull, actually a composite of several Tyrannosaurus skulls. The restored holotype T. rex now faces off with a cast of “Peck’s Rex”, a specimen recovered from Montana in 1997. Despite the difficulty of modernizing the historic specimen, the team reportedly developed a healthy respect for turn of the century mount-makers like Adam Hermann and Arthur Coggeshall, who developed the techniques for making enduring displays of fragile fossils that are still being refined today.

Continue to Displaying the Tyrant King Part 3.

References

Colbert, E.H., Gillette, D.D. and Molnar, R.N. “North American Dinosaur Hunters.” The Complete Dinosaur, Second Edition. Brett-Surman, M.K., Holtz, T.R. and Farlow, J.O., eds.Bloomington, IN: Indiana University Press.

Dingus, L. 1996. Next of Kin: Great Fossils at the American Museum of Natural History. New York, NY: Rizzoli International Publications, Inc.

Johnson, K. and Stucky, R.K. 2013. “Paleontology: Discovering the Ancient History of the American West.” Denver Museum of Nature and Science Annals, No. 4.

Larson, N. 2008. “One Hundred Years of Tyrannosaurus rex: The Skeletons.” Tyrannosaurus rex, The Tyrant King. Larson, Peter and Carpenter, Kenneth, eds. Bloomington, IN: Indiana University Press.

Naish, D. 2009. The Great Dinosaur Discoveries. Berkeley, CA: University of California Press.

Norell, M., Gaffney, E.S. and Dingus, L. 1995. Discovering Dinosaurs: Evolution, Extinction, and the Lessons of Prehistory.  Berkeley, CA: University of California Press.

Psihoyos, L. 1994. Hunting Dinosaurs. New York, NY: Random House, Inc.

4 Comments

Filed under AMNH, CMNH, dinosaurs, fossil mounts, history of science, museums, NMNH, paleoart, reptiles, theropods

Displaying the Tyrant King – Part 1

 

The original Tyrannosaurus rex mount at the American Museum of Natural History. Photo from Dingus 1996.

The original Tyrannosaurus rex mount at the American Museum of Natural History. Photo from Dingus 1996.

Woodrow Wilson is in the white house. The first World War is raging in Europe, but the United States is not yet involved. The women’s suffrage movement is picking up speed. And you just heard that the skeleton of an actual dragon is on display at the American Museum of Natural History in New York. It is difficult to imagine a time before every man, woman, and child in the developed world knew the name Tyrannosaurus rex, but that world existed not even a century ago. In 1915, AMNH unveiled the very first mounted skeleton of the tyrant lizard king, immediately and irrevocably cementing the image of the towering reptilian carnivore in the popular psyche.

Today, Tyrannosaurus is a celebrity among dinosaurs, appearing in every form of media imaginable. More importantly, however, it is an icon for paleontology and an ambassador to science. The cult of T. rex began in the halls of museums, and museums remain the prehistoric carnivore’s symbolic home. The mounted skeletons in museums provide the legendary T. rex its credibility: these are the authentic remains of the giant predator that once stalked North America. And yet, most of the dozens of  Tyrannosaurus skeletons on display around the world are casts, and none of them represent complete skeletons (rather, they are filled in with spare parts from other specimens and the occasional sculpted bone). These are sculptures as well as scientific specimens, works of installation art composed by artists, engineers, and scientists. Herein lies the paradox presented by all fossil mounts: they are natural specimens and constructed objects, embodying a challenging duality between the realms of empiricism and imagination.

Tyrannosaurus mount is at once educational and spectacular. Both roles were embraced at AMNH in 1915, and these dual identities have defined T. rex displays ever since. 14 years ago, FMNH PR 2081, also known as Sue, became a star attraction for the Field Museum of Natural History and the city of Chicago at large. Later this month, another T. rex will unwittingly take on a similar role: on April 15th, MOR 555, an 80% complete Tyrannosaurus specimen discovered in Montana, will be dubbed “The Nation’s T. rex and entered into the Smithsonian National Museum of Natural History collection with considerable fanfare.

Skull cast of MOR 555, soon to be "The Nation's T. rex", at NMNH.

Skull cast of MOR 555, soon to be “The Nation’s T. rex“, at the National Museum of Natural History. Photo by the author.

This three part series is a look back at how the tyrant king has defined, and been defined by, the museum experience. Part 1 will cover the circumstances surrounding the creation of the iconic original Tyrannosaurus mount in New York, as well as its successor in Pittsburgh. Part 2 will explore the changing role of Tyrannosaurus in museums caused by a surge of new fossil finds and a revolution in our understanding of dinosaurs. Finally, Part 3 will conclude with a discussion of the positives and negatives of a modern world saturated in all things T. rex.

The Original Tyrant

Between 1890 and 1910, the United States’ large urban natural history museums entered into a frenzied competition to find and display the largest and most spectacular dinosaur skeletons. Although the efforts of paleontologists O.C. Marsh and E.D. Cope in the late 19th century fleshed out the scientific understanding of Mesozoic reptiles, it was these turn-of-the-century museum displays that brought dinosaurs into the public sphere. Bankrolled by New York’s wealthy aristocrats and led by the ambitious mega-tool Henry Osborn, AMNH won the fossil race by most any measure. The New York museum completed the world’s first mounted skeleton of a sauropod dinosaur in 1905, and also left its Chicago and Pittsburgh competitors in the dust with the highest visitation rate and the most fossil mounts on display.

Osborn’s goal was to establish AMNH as the global epicenter for paleontology research and education, and in 1905 he revealed his ace in the hole: two partial skeletons of giant meat-eating dinosaurs uncovered by fossil hunter Barnum Brown. In a deceptively brief paper in the Bulletin of the American Museum of Natural History, Osborn described the fossils from Wyoming and Montana, coining the names Dynamosaurus imperiosus and Tyrannosaurus rex (a follow-up paper in 1906 reclassified “Dynamosaurus” as a second Tyrannosaurus specimen). Fully aware of what a unique prize he had in his possession, Osborn wasted no time leveraging the fossils for academic glory (and additional funding from benefactors). He placed the unarticulated Tyrannosaurus fossils on display at AMNH shortly after his initial publication, and commissioned legendary artist Charles Knight to prepare a painting of the animal’s life appearance.

In 1908, Brown collected a much more complete Tyrannosaurus specimen (AMNH 5027), with over 50% of the skeleton intact, including the first complete skull and a significant portion of the torso. With this specimen in hand, AMNH technician Adam Hermann and his team began work on a mounted Tyrannosaurus skeleton to join the Museum’s growing menagerie of mounted dinosaurs and prehistoric mammals. Inspired by the Museum’s collection of taxidermy mounts in dynamic habitat dioramas, and seeking to accentuate the spectacle of his reptilian monster, Osborn initially wanted to mount two Tyrannosaurus skeletons facing off over a dead hadrosaur. He even published a brief description complete with illustrations of the projected scene (shown below). However, the structural limitations inherent to securing heavy fossils to a steel armature, as well as the inadequate amount of Tyrannosaurus fossils available, made such a sensational display impossible to achieve.

Model of unrealized T. rex showdown mount from Osborn 1913.

Model of unrealized T. rex showdown mount. Image from Osborn 1913.

Instead, Hermann prepared a single Tyrannosaurus mount, combining the 1908 specimen with plaster casts of leg bones from the 1905 holotype. The original skull was impractically heavy, so a cast was used in its place. Finally, missing portions of the skeleton, including the arms, feet, and most of the tail, were sculpted by hand using bones from Allosaurus as reference. During the early 20th century, constructing fossil mounts was a relatively new art form, and while Hermann was one of the most talented and prolific mount-makers in the business, his techniques were somewhat unkind to the fossil material. Bolts were drilled directly into the fragile bones to secure them to the armature, and in some cases steel rods were tunneled right through the bones. Any fractures were sealed with plaster, and reconstructed portions were painted to be nearly indistinguishable from the original fossils. Like most of the early AMNH fossil mounts, preserving the integrity of the Tyrannosaurus bones was often secondary to aesthetic concerns like concealing the unsightly armature.

Tyrannosaurus and others in AMNH Dinosaur Hall, 1927. Photo courtesy of AMNH Research Library.

AMNH Tyrannosaurus, ca. 1940. Photo courtesy of the AMNH Research Library.

The completed Tyrannosaurus mount, a magnificent sculptural combination of bone, plaster, and steel, was unveiled in 1915 to stunned audiences. The December 3rd New York Times article was thick with hyperbole, declaring the dinosaur “the prize fighter of antiquity”, “the king of all kings in the domain of animal life,” “the absolute warlord of the earth” and “the most formidable fighting animal of which there is any record whatsoever” (and people say that today’s science journalism is sensationalist!). With its tooth-laden jaws agape and a long, dragging lizard tail extending its length to over 40 feet, the Tyrannosaurus was akin to a mythical dragon, an impossible monster from a primordial world. This dragon, however, was real, albeit safely dead for 66 million years.

Today, we know that the original AMNH Tyrannosaurus mount was inaccurate in many ways. The upright, tail-dragging pose, which had been the most popular attitude for bipedal dinosaurs since Joseph Leidy’s 1868 presentation of Hadrosaurus, is now known to be incorrect. More complete Tyrannosaurus skeletons have revealed that the tail reconstructed by Osborn and Hermann was much too long.  The Allosaurus-inspired sculpted feet were too robust, the legs (casted from the 1905 holotype), were too large compared to the rest of the body, and the hands had too many fingers (the mount was given proper two-fingered hands when it was moved in 1927). It would be misleading to presume that the prehistoric carnivore’s skeleton sprang from the ground exactly as it was presented, but it is equally problematic to reject it as a fake. There are many reasons to criticize Osborn’s leadership at AMNH, but he did not exhibit outright forgeries. The 1915 Tyrannosaurus mount was a solid representation of the best scientific data available at the time, presented in an evocative and compelling manner.

The AMNH Tyrannosaurus mount was no less than an icon: for paleontology, for its host museum, and for the city of New York. The mount has been a New York attraction for longer than the Empire State Building, and for almost 30 years, AMNH was the only place in the world where visitors could see a T. rex in person. In 1918, Tyrannosaurus would make its first Hollywood appearance in the short film The Ghost of Slumber Mountain. This star turn was followed by roles in 1925’s The Lost World and 1933’s King Kong, firmly establishing the tyrant king’s celebrity status. It is noteworthy that special effects artist Willis O’Brian and model maker Marcel Delgado copied the proportions and posture of the AMNH display exactly when creating the dinosaurs for each of these films. The filmmakers apparently took no artistic liberties, recreating Tyrannosaurus precisely how the nation’s top scientists had reconstructed it in the museum.

A T. rex for Pittsburgh

In 1941, AMNH ended it’s Tyrannosaurus monopoly and sold the incomplete type specimen (the partial skeleton described in Osborn’s 1905 publication) to Pittsburgh’s Carnegie Museum of Natural History. While it is sometimes reported that this transfer took place to keep the valuable fossils out of harm’s way during World War II (e.g. Larson 2008), the deal was apparently underway well before the United States became involved in the war. Having paid an astounding $100,000 ($1.7 million in today’s dollars) for the fossils, CMNH staff wasted no time in assembling a mount of their own. The Tyrannosaurus holotype only included only about 15% of the skeleton, so most of Pittsburgh mount had to be made from casts and sculpted elements. Somewhat pointlessly, the skull fragments included with the specimen were buried inside a plaster skull replica, making them inaccessible to researchers for several decades. Completed in less than a year, the CMNH Tyrannosaurus was given an upright, tail-dragging posture very much like its AMNH predecessor.

Carnegie Museum of Natural History. Photo from NPR.

CM 9380 at the Carnegie Museum of Natural History. Source

The mid-20th century is sometimes called the “quiet phase” in vertebrate paleontology. After enjoying public fame and generous federal support during the late 1800s, paleontology as a discipline was largely marginalized when experiment-driven “hard” sciences like physics and molecular biology rose to prominence. By the 1950s and 60s, the comparably small number of researchers studying ancient life were chiefly concerned with theoretical models for quantifying trends in evolution. Although the aging dinosaur displays at American museums remained popular with the public, these animals were perceived as evolutionary dead-ends, of little interest to the majority of scientists. Between 1908 (when Brown found the iconic AMNH Tyrannosaurus skeleton) and 1980, only four largely incomplete Tyrannosaurus specimens were found, and no new mounts of this species were built.

Continue to Displaying the Tyrant King Part 2.

References

Dingus, L. (1996). Next of Kin: Great Fossils at the American Museum of Natural History. New York, NY: Rizzoli International Publications, Inc.

Glut, D. 2008. “Tyrannosaurus rex: A century of celebrity.” Tyrannosaurus rex, The Tyrant King. Larson, Peter and Carpenter, Kenneth, eds. Bloomington, IN: Indiana University Press.

Hermann, A. 1909. “Modern Laboratory Methods in Vertebrate Paleontology.” Bulletin of the American Museum of Natural History 21:283-331.

Larson, N. 2008. “One Hundred Years of Tyrannosaurus rex: The Skeletons.” Tyrannosaurus rex, The Tyrant King. Larson, Peter and Carpenter, Kenneth, eds. Bloomington, IN: Indiana University Press.

“Mining for Mammoths in the Badlands: How Tyrannosaurus Rex Was Dug Out of His 8,000,000 Year old Tomb,” The New York Times, December 3, 1905, page SM1.

Naish, D. 2009. The Great Dinosaur Discoveries. Berkeley, CA: University of California Press.

Osborn, H.F. 1906. “Tyrannosaurus, Upper Cretaceous Carnivorous Dinosaur.” Bulletin of the American Museum of Natural History 22:281-296.

Osborn, H.F. 1913. “Tyrannosaurus, Restoration and Model of the Skeleton.” Bulletin of the American Museum of Natural History 32:9-92.

Rainger, Ronald 1991. “An Agenda for Antiquity: Henry Fairfield Osborn and Vertebrate Paleontology at the American Museum of Natural History, 1890-1935. Tuscaloosa, Alabama. University of Alabama Press.

Wesihampel, D.B. and White, Nadine M. 2003.The Dinosaur Papers: 1676-1906. Washington, DC: Smithsonian Books.

1 Comment

Filed under AMNH, CMNH, dinosaurs, fossil mounts, history of science, movies, museums, NMNH, reptiles, theropods